
“Object-oriented programming offers a sustainable
way to write spaghetti code”1

—Paul Graham
The Hundred-Year Language

1It was said here: http://www.paulgraham.com/hundred.html . Do I
agree? Yes, I do. The object-oriented programming we’re using right now is
indeed a perfect tool to create unreadable and unmaintainable code. Does it
mean it is dead and can’t be fixed? I don’t think so.

3

Contents

Acknowledgements 9

Preface 11

5 Gray 13
5.1 Compound names 14
5.2 Validators and assertions 24
5.3 Printers instead of getters 36

5.3.1 Single Responsibility Principle 41
5.3.2 God object 43
5.3.3 Code duplication 44
5.3.4 Utility objects 46
5.3.5 Polymorphic media 48

5.4 Private static literals 54
5.5 Configurable objects 63
5.6 Temporal coupling 70
5.7 Inheritance . 83

5.7.1 Subtyping 83
5.7.2 Implementation inheritance 86

5.8 Gradients of immutability 89
5.9 Law of Demeter . 101
5.10 Algorithms . 106

5

6 Dark 125
6.1 Annotations . 126

6.1.1 Marshalling 128
6.1.2 Dependency injection 133
6.1.3 Access control 136
6.1.4 AOP and aspects 138

6.2 MVC . 147
6.3 Dependency injection containers 158
6.4 Reflection . 166

6.4.1 Type introspection 167
6.4.2 Type casting 169
6.4.3 Annotations 173
6.4.4 Instantiating by class name 173
6.4.5 Method invocation by name 175
6.4.6 Setting and getting attributes 176
6.4.7 Serialization 176
6.4.8 Byte code manipulations 178

6.5 ORM . 179
6.5.1 Horizontal DoR 180
6.5.2 Vertical DoR 184
6.5.3 Mapping engine 185
6.5.4 DTO . 190
6.5.5 SQL speaking objects 191
6.5.6 Too many round trips 195
6.5.7 Duplicated SQL manipulations 198
6.5.8 “JOIN” and foreign keys 200
6.5.9 “INSERT” 203
6.5.10 “UPDATE” 204
6.5.11 Transactions 206

Epilogue 209

6

Preface

Object-oriented programming (OOP) unfortunately is not an
exact science. This means that there is no clear definition
anywhere of what an object, a class, a method, a variable, or a
program is. There is no “formula” to put all these pieces together
and prove their consistency1. Functional and logical
programming paradigms have that, while the object-oriented one
doesn’t. In OOP, in most cases, the formula still is: “if it works,
don’t touch it.”

Despite this lack of formality in OOP, the majority of software
we use now consists of classes, objects, and methods. The
authors think that their software is object-oriented. Can they
prove that? They can’t. Can I prove the opposite and tell them
that they misunderstand the object-oriented paradigm because
some of their methods are static while others are getters? I can’t.

I have tried, however. In the first volume of this book there were
a number of principles suggested, which were supposed to make
software more object-oriented. They were not strictly scientific
and didn’t have formal proofs, but they did help many
programmers to increase the maintainability of their source
code—to make it easier to understand and extend. I can tell that
by the feedback received through the blog, at the conferences,
and simply by email.

Thanks to this feedback you now hold this book in your hands. It
contains another portion of those “magic” principles, which are
not really scientific but may be rather helpful. To what extent

1Martin Abadi and Luca Cardelli, A Theory of Objects, Springer, 1998.
This book attempts to formalize an object calculi, however repeating many
mistakes made in object-oriented programming earlier, like classes, traits,
inheritance, and others.

11

you will be able to apply them to your code depends on many
factors, including your willingness to change and the amount of
legacy code you have to work with.

The book starts with Chapter 5, to match consistently with the
first volume, where you will find the first four chapters.

12

Chapter 5

Gray

There are sixteen sections in this book, grouped into two
chapters, with almost no grouping principle. Well, there is a
principle, but it is very artificial. The first chapter is about
things that hurt object-oriented programming, while the second
chapter is about things that kill it. That’s why the first one is
called “Gray,” and the second one “Dark.” The techniques in the
Gray chapter are not fatal, but are rather bad. The ones in the
second chapter are absolutely deadly, and you must stay away
from them as far as possible.

13

5.1 Compound names

In any object-oriented software written in any programming
language, there are three things that we have to give names to:
classes, methods, and variables1. They are the building blocks of
the language, and they must be named properly in order to make
the code readable and maintainable.

Some principles of naming classes and methods were discussed in
Sections 1.1 and 2.4 of the first volume of Elegant Objects.
Variable names are also very important, and have to be chosen
well. We will discuss them in this section.

I’m aware of two popular notations: snake_case, and camelCase,
which are both wrong and confusing. There are more of them
(like Hungarian notation, positional notation, or kebab-case), but
they are less popular.

First, let’s see how it all started. When the first computer
program was created, I hadn’t been born yet, but I know that at
that time computers were rather slow. Simply typing the code for
a program was a time-consuming operation. For that reason, and
to save memory space, it was important to keep listings as short
as possible. For example, this is a program written in Assembly
language for an x86 CPU:

� MOV AX, 16h
� DEC BX
� JZ done

1Well, there are also namespaces, packages, files, directories, modules,
libraries, and many others, but they are irrelevant to the problem we’re
discussing.

14

It doesn’t do anything valuable, but do pay attention to the
variable names it uses: AX and BX . They are very short. They
have absolutely no semantic. Technically, they are not even
variables, as “storage locators.” They are registers in the CPU.
They will have these names in any program written for the x86
CPU. A programmer must remember what AX means at any
particular point in a program. In the first directive MOV , we’re
storing a hexadecimal value 16 to AX . What does 16 mean?
It’s not clear from this listing. For how long will it stay there?
No idea. How is it related to other registers? No clue. Only the
author of this code could tell us. Perhaps an author would add a
few code comments attached to some lines of code to make them
more readable. The code itself is not at all descriptive.

Higher level languages, like FORTRAN, BASIC, and COBOL,
introduced variables with semantically richer names. For
example, this is BASIC:

� 10 FOR i=1 TO 10
� 20 PRINT i
� 30 NEXT

Here, the variable name is i . It is still short, it is easy to type, it
is easy to understand, but it means “index.” Most variables in
these early languages were named the same way, using just one
letter: x and y for coordinates, i , j , and k for looping indexes,
p for pointers, and simply a , b , and c in all other cases.

What is wrong with giving short one-letter names to variables?
Actually, not much. Seriously, I don’t think it’s an evil notation.
I find it less evil than the other two we will discuss now. Look at
the BASIC example above one more time. Do you understand
what the i variable is for? I do. Because the scope of visibility is

15

rather small! If that piece of code had hundreds of lines and used
a few dozen one-letter variables, I would have a hard time
understanding and remembering their meanings. But it is rather
short, and contains only three simple lines. Thanks to that, this
single-letter name is a perfect choice.

However, in the 1960s, programs were rather long, imperative,
and badly written. In most cases, the scope of visibility included
thousands of lines of code. I can’t prove this statement, I’m just
guessing, but it’s not really important. Look at a popular
open-source Java library, and there will be many classes that
contain thousands of lines. We haven’t changed a lot, in this
respect, since last century.

Here are some “champions” (measured on April 14, 2017):

Class Product LoC
o.s.a.MethodWriter Spring Framework 4.7 2,393
o.h.c.AnnotationBinder Hibernate 5.2 3,434
o.h.j.JdbcResultSet H2 Database 1.4.194 3,849
c.g.c.c.LocalCache Guava 21.0 5,176
j.u.r.Pattern OpenJDK 8 5,856
o.a.h.h.s.n.FSNamesystem Hadoop 3.0 7,216
j.a.Component OpenJDK 8 10,157
a.v.View Android SDK 23,934

Unix and C were the technologies that changed the world of
programming. C inherited one-letter variables from older
languages, but also introduced a “snake_case” notation1. Here is
an example of C code from a famous book2, page 111:

1The name “snake_case” was introduced much later, in 2004 in Ruby
community by Gavin Kistner: https://goo.gl/jQNA4t.

2Brian Kernighan and Dennis Ritchie, The C Programming Language,
2nd Edition, Prentice Hall, 1988.

16

static char daytab[2][13] = {
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}

};
int day_of_year(int year, int month, int day) {
int i, leap;
leap = year%4 == 0 && year%100 != 0 || year%400 == 0;
for (i = 1; i < month; i++)
day += daytab[leap][i];

return day;
}

Pay attention to the names of the global array daytab and the
function day_of_year . The name of the array is not really in
snake_case, but very close. Just the underscore is omitted. The
authors of the book are using both formats (with and without
underscore), without any particular reason. What is important to
notice here is that these names are compound—each of them
consists of a few words: “day” + “tab,” “day” + “of” + “year.”
That’s how the authors use the code itself to explain the meaning
of the variables. And it works well.

In some languages, the underscore symbol can be replaced by a
hyphen. For example, in Lisp and COBOL, we could name the
variable day-tab . This is not technically snake_case, but it’s
very close.

A more compact—and a better looking, in my opinion—notation
is camelCase, which is the same as “PascalCase” with the first
letter lowercase. It became popular with the appearance of
object-oriented languages like Object Pascal and Java. It is very
commonly used in Java for naming classes, methods, and
variables. For example, this code is quoted from a very popular

17

Java book1, page 284:

� LocalDate today = LocalDate.now();
� Month currentMonth = today.getMonth();
� Month firstMonthofQuarter =

�� currentMonth.firstMonthOfQuarter();

Here, both variables and names use camelCase notation. Their
first words start with small letters, while all of the other words
start with capital letters (I have no idea why “of” in the third
variable doesn’t start with a capital “O,” probably a typo in the
book). Just like snake_case, this notation helps developers
explain to each other what each particular variable is for. In
other words, longer variable names deliver more semantic
information than shorter ones.

But, this is doing us a very bad favor.

Both snake_case and camelCase notations are great workarounds,
but they are not really solutions to the problem. Moreover, as
with almost every workaround, we are only making the situation
worse by concealing the problem instead of fixing it. Now, finally,
let’s see what the problem is, and why it needs a solution.

A proper variable naming notation is supposed to solve a
problem of low readability. We don’t want to name our variables
something that isn’t descriptive, like var1 , var2 , var3 , etc.
Instead, we want to give them more meaningful names. But why?
The compiler will understand the code no matter what. Why do
we care about naming? Because we want to make our code more
readable. We want to be able to understand it in a week, in a

1Benjamin Evans and David Flanagan, Java in a Nutshell, 6th Edition,
O’Reilly Media, 2015.

18

month, and in five years. It will be difficult to tell the difference
between a1 and a2 , while the difference between
encoded_array and decoded_array will be much more
obvious.

That is the problem. Actually, it is not exactly a problem, but a
goal: we need to find a way to make our code more readable.
And we will use as descriptive variable names as possible in order
to help our readers understand the code!

Stop. Why are we trying to achieve this goal by using variable
names? How about instead of that, we make the surrounding
code more readable in the first place, and then the meaning of
variables will become obvious as a result.

Just like in the first BASIC example above, where the variable i
is just an index of a loop. Was that code readable? Definitely.
Was it maintainable? Absolutely. Was our variable name
descriptive enough? Yes! It was descriptive enough when it
appeared in that small piece of code.

If the amount of code starts growing, we could make the variable
names longer by introducing one of the variable naming notations.
Or, we could take this as a signal that our code is too big. If we
need to explain our code to a reader via variable names, it needs
refactoring. Short and simple variable names should be enough to
explain the code, otherwise the code is too long in the first place.

Using descriptive variable names is a patch, not a cure. They do
make code more readable, but they don’t solve the root cause of
the problem—its high complexity. Because of high complexity,
we need to use variable names like utfEncodedFile or
receivedByteArray . We simply wouldn’t be able to understand
what they were for if their names were file and array . Since

19

there are so many other files and arrays around, we need to
explain to our readers what this specific file or array is for—what
it is and what it does. The reader won’t understand it otherwise,
because the complexity of the code is too high.

But if we do things this way, we don’t solve the complexity
problem, we only hide it. The code becomes more readable in the
short-term, but the bigger and more fundamental problem
remains—it is too complex to be understood without long and
descriptive variable names. By using composite variable names
like hashCode or extra_bytes programmers can easily get
away with badly written code, but do we really want them to get
away with that? I mean, do we want to ignore the bigger
problem and get away with short-term solutions?

Instead of hiding the complexity issue, we need to make it more
visible. Mostly, we have to do this to force everyone to solve it as
soon as possible. We simply need to prohibit long variable names.
Every variable has to have a name consisting of a single noun, for
example file , array , index , user , url , target , and
stream ; or even better position , jeff , google , config , and
log . Even i and j are better than firstArrayIndex and
secondArrayIndex , because they force a programmer to make
code short and clear in the first place.

The code must be descriptive enough by itself. Each and every
scope of visibility (a method, a class, or a script) must only have
as many variables as it can have without making the names
longer than single or plural nouns. When it becomes necessary to
make names longer, the scope has to be broken down into smaller
ones. Longer and more descriptive names will definitely help, but
we must not use them. Instead, we must stop and think why a
simple text is not enough. Why do we need to call it

20

saved_text or text_with_quotes ? The honest answer to this
question would, in most cases, be “because otherwise it’s unclear
what text means.”

Let’s look at the examples above one more time. In that C code
by Kernighan and Ritchie, why did they name that global array
daytab ? Why not just tab or simply days ? Because the scope
of its visibility was huge—it was actually as big as the entire
application. The variable was global, and every other C function
was able to see it. If they called it days , there would have been
many semantic conflicts with other variables that could mean
something else that were also called days . That’s why they had
to be specific enough, to prevent possible semantic collisions. The
same is true for the function day_of_year—they couldn’t name
it day , because it was declared in the global scope. Many other
functions and modules simply wouldn’t understand what day
meant, and might also try to overload this name with some other
functions, doing something completely different.

When the scope is too big, we inevitably must make our names
descriptive enough. We’re doing that instead of fixing the bloated
scope problem. We’re simply closing our eyes to the bigger
problem, pretending to make the code more readable by using
fileName instead of name . That’s just wrong, simply because
the real problem remains with the code—it is still unreadable
because it is too big. Eventually, all variables will be 30-40
characters long and the code will be very difficult to read.

Look at this code from java.lang.String in Oracle JDK (I
removed a few comments and fixed indentation inconsistencies):

static int lastIndexOf(char[] source, int sourceOffset,
int sourceCount, char[] target, int targetOffset,
int targetCount, int fromIndex) {

21

int rightIndex = sourceCount - targetCount;
if (fromIndex < 0) {
return -1;

}
if (fromIndex > rightIndex) {
fromIndex = rightIndex;

}
if (targetCount == 0) {
return fromIndex;

}
int strLastIndex = targetOffset + targetCount - 1;
char strLastChar = target[strLastIndex];
int min = sourceOffset + targetCount - 1;
int i = min + fromIndex;
startSearchForLastChar:
while (true) {
while (i >= min && source[i] != strLastChar) {
i--;

}
if (i < min) {
return -1;

}
int j = i - 1;
int start = j - (targetCount - 1);
int k = strLastIndex - 1;
while (j > start) {
if (source[j--] != target[k--]) {
i--;
continue startSearchForLastChar;

}
}
return start - sourceOffset + 1;

}
}

Authors of this method were trying to make it more readable by
making variable names longer, but did they really manage to

22

achieve anything? Do you understand what this method does
and how? I tried to read it a few times, to no avail. Don’t repeat
their mistake. If the code is not readable, it has to be fixed.
Longer and compound variable names are not how we fix it.

Thus, a simple rule of thumb I’m suggesting is the
following—don’t use any compound names anywhere in the code.
If you can’t explain your code using just single and plural nouns,
refactor the code.

There could be exceptions where a single noun would not be
enough, mostly because it would lose its meaning if the adjective
is removed. For example: timeZone , side-effect ,
MicroService , ChangingRoom , washing_machine , busStop ,
laughing-gas , etc.

This rule is applicable to variables only. Method naming was
discussed in Section 2.4 of the first volume and class naming was
discussed in Section 1.1 of the first volume.

23

