
“Step one in the transformation of a successful
procedural developer into a successful object
developer is a lobotomy”

–David West1

1David West, Object Thinking, Microsoft Press, 2004.

3

Contents

Acknowledgements 9

Preface 11

1 Birth 17
1.1 Never use -er names 19
1.2 Make one constructor primary 28
1.3 Keep constructors code-free 34

2 Education 43
2.1 Encapsulate as little as possible 44
2.2 Encapsulate something at the very least 48
2.3 Always use interfaces 52
2.4 Choose method names carefully 55

2.4.1 Builders are nouns 57
2.4.2 Manipulators are verbs 60
2.4.3 Examples of both 62
2.4.4 Boolean results 64

2.5 Don’t use public constants 67
2.5.1 Introduction of coupling 69
2.5.2 Loss of cohesion 71

2.6 Be immutable . 77
2.6.1 Identity mutability 82
2.6.2 Failure atomicity 84

5

2.6.3 Temporal coupling 86
2.6.4 Side effect-free 88
2.6.5 No NULL references 90
2.6.6 Thread safety 91
2.6.7 Smaller and simpler objects 95

2.7 Write tests instead of documentation 98
2.8 Don’t mock; use fakes 103
2.9 Keep interfaces short; use smarts 112

3 Employment 117
3.1 Expose fewer than five public methods 119
3.2 Don’t use static methods 121

3.2.1 Object vs. computer thinking 123
3.2.2 Declarative vs. imperative style 126
3.2.3 Utility classes 137
3.2.4 Singleton Pattern 138
3.2.5 Functional programming 143
3.2.6 Composable decorators 145

3.3 Never accept NULL arguments 150
3.4 Be loyal and immutable, or constant 158
3.5 Never use getters and setters 169

3.5.1 Objects vs. data structures 170
3.5.2 Good intentions, bad outcome 174
3.5.3 It’s all about prefixes 176

3.6 Don’t use “new” outside of secondary ctors 178
3.7 Avoid type introspection and casting 185

4 Retirement 191
4.1 Never return NULL 193

4.1.1 Fail fast vs. fail safe 197
4.1.2 Alternatives to NULL 199

4.2 Throw only checked exceptions 203

6

4.2.1 Don’t catch unless you have to 206
4.2.2 Always chain exceptions 209
4.2.3 Recover only once 212
4.2.4 Use aspect-oriented programming 214
4.2.5 Just one exception type is enough 216

4.3 Be either final or abstract 217
4.4 Use RAII . 224

Epilogue 227

Index 229

7

Preface

There have been many books written about Object-Oriented
Programming (OOP). Why another? Because we are in trouble.
We are getting further and further away from what OOP creators
had in mind, and there is almost no hope of turning back. All
existing OOP languages encourage us to treat objects as “data
structures with attached procedures”, which is a totally wrong
and dangerous misconception. We create new languages, but they
do the same or even worse. As object-oriented programmers, we
are forced to think like procedural programmers thought 40 years
ago. In other words, think like computers, not objects.

This book is a collection of practical recommendations that I
believe can change the situation and stop the degradation of
OOP. I learned most recommendations from the publications
listed in the bibliography at the end of the book. Some of them I
just made up.

There are 23 strands of advice, grouped into four chapters: birth,
school, employment, and retirement. We’ll talk about “Mr.
Object,” an anthropomorphized entity in the object-oriented
world. He will be born, go to school, get hired to do some job for
us, and then retire. We’ll watch how it unfolds and try to learn
something new. Together. Let’s go.

Wait. You know, before publishing, I sent this book to a dozen
reviewers and almost all of them complained about the absence
of an intro. They said that I threw them blindly into the first
theme, with no overall context. They also said that it was
difficult to digest my ideas, having a lot of previous experience in
Java/C++ programming. They found that what they think OOP
is contradicts with my understanding of it. Long story short,

11

they all demanded that I write an intro. So, here it is.

I believe that OOP was designed as a solution for the problems
we had in procedural programming, especially in languages like C
and COBOL. The procedural style of writing code is very easy to
understand for those who understand how a CPU works,
processing instructions one by one, and letting them manipulate
the data in memory. A piece of code in C, also known as a
“function,” is a set of statements, which have to be executed in a
chronological order, basically moving data from one place in
memory to another and making some in-fly transformations with
them. That’s how it worked for years and it still works. There is
a ton of software written in that style, including all major Unix
operating systems, for example.

Technically, this approach works—the code compiles and runs.
However, there are problems with maintainability. The author of
the code can more or less easily understand how it works while
he or she is writing it. However, when you look at that code later,
it’s rather difficult to figure out what the intention of its author
was. In other words, it is written for computers, not for humans.
The best example of such a procedural and imperative language
is probably Assembly. It stays as close as possible to the CPU, is
very far from the language we speak in real life. There is no such
thing as customer, file, rectangle, or price in Assembly. There are
only registers, bytes, bits, and pointers—the things a CPU
understands very well.

That’s how it was years ago, when computers were big, slow, and
in charge. We had to learn and speak their language, not the
other way around. This was mostly because we had to make our
software fast in order to be useful. We were fighting for each
processing instruction, for each byte of memory. We didn’t really

12

care much about maintainability, more about speed and memory
usage. It is important to mention that twenty years ago,
programmers were much cheaper than computers. Excuse me
that comparison, but it’s true. Hiring a new programmer was
cheaper than buying a bigger hard disc. Sometimes it was not
even possible to solve a performance problem with extra
hardware. There was no faster or larger hardware! But
programmers were rather cheap (you can try to find statistics
about our salaries twenty years ago). That’s why we had to do
what CPUs told us to.

Fortunately, the situation started to change some time ago and
the problem of maintainability became more important than
speed and memory. The lifecycle of software products also
started to grow and it became obvious that Assembly code
simply can’t survive a transfer from one team to another—the
new team would always want to re-write from scratch instead of
figuring out how that 5000-line listing works. I believe that’s how
higher-level programming paradigms started to appear, including
functional, logical and object-oriented (there are more, but these
three are the most popular, I think). They all were shifting the
focus from computers to humans. They allowed us to speak our
own language instead of the language our CPU was used to.
They helped us make the code much easier to understand and
therefore much more maintainable. That was the intention.

However, historically, OOP inherited a lot from procedural
programming. Well, not OOP as a paradigm, but the languages
that became popular and were declared object-oriented.

I’m talking mostly about C++ and Java. Others, like Ruby,
simply followed the direction set by these big two. Maybe that
was the reason why C++ became popular—because it looked

13

very similar to C and was consequently easy to learn. Java was
also designed to simplify the transition from C++—its syntax
looked very much like C++ and was easy for C++ programmers
to learn. Because of these two big compromised transitions (from
C to C++ and from C++ to Java) we have OOP that looks very
much like procedural C.

Even though we have classes and objects, we still have
instructions, statements, and their chronological execution. We
don’t deal any more with pointers, memory manipulations, and
CPU registers, but the core principle is still in place—we instruct
our CPU what to do and we manipulate data in memory. You
may say, what’s wrong with that? Nothing is wrong, if you want
to stay in the procedural domain. Just like nothing was wrong
with Assembly. Except the fact that the code was not really
maintainable. This is the same problem we have today with
Java/Ruby/Python/etc software—it is not maintainable, because
it never was object-oriented.

Our code has classes, methods, objects, inheritance, and
polymorphism, but it’s not really object-oriented. What exactly
is wrong with it? This is what I’m trying to explain in this book.
It’s really difficult to say what I have to say in just a few
paragraphs. You really have to read it all, in order to grasp the
idea and the mindset of pure OOP.

I tried to make the material as practical as possible and illustrate
ideas with realistic code examples. Moreover, almost every
section here has a blog post on the same or a very relevant
subject. You can find links to these blog posts at the beginnings
of sections. Feel free to post your comments there and I’ll try to
reply and discuss. Honestly, I don’t think I’m right in everything
I’m saying here. I was a procedural programmer myself for many

14

years. It’s really difficult to forget it all and start thinking in
objects, instead of instructions and statements. Thus, I will
appreciate your feedback.

That was the intro. I don’t think it gave you a lot of information,
but at least you know now what we’ll be talking about in the
next two hundred pages. Be ready for a lot of controversy. And
be brave to challenge yourself. Have fun!

15

Chapter 1

Birth

An object is a living organism—let’s start from this. From the
first page on, we’ll do as much as we can to anthropomorphize it.
We will be treating it as a human being, in other words. That’s
why I will use he to refer to an object. And my dear female
readers, please don’t be offended. I may sometimes be rude to a
poor object and don’t want to be rude to a woman. So in this
book, an object is a male, a “he.”

To start with, he lives inside his scope of visibility. For example,
(I’m mainly using Java and will continue to do so; I hope you
understand it):

� if (price < 100) {
� Cash extra = new Cash(5);
� price.add(extra);
� }

Object extra is visible only inside the if block—that is his
scope of visibility. Why is that important now? Because an

17

object is a living organism. We should define what his living
environment is and will be before we breathe life into him. What
remains within him and what lies outside? In this example,
price is outside and the number 5 is inside, right?

By the way, before we continue, let me assure you that
everything you are going to read in this book is very practical
and pragmatic. Rather than waxing on about philosophy, the
majority revolves around the practical application of
object-oriented programming to real-life problems. The main
goal I’m trying to achieve with this writing is to increase the
maintainability of your code. Of our code.

Maintainability is an important quality of any kind of software,
and it may be measured as the time required for me to
understand your code. The longer it takes, the lower the
maintainability and therefore the worse your code is. I would
even say that if I don’t understand you, it’s your fault. By
understanding objects and their roles in OOP, you will increase
your code’s maintainability. Your code will become shorter, easier
to digest, more modular, more cohesive, etc. It will become
better, which in most real-life projects means cheaper; that’s it.

So please don’t be surprised by my seemingly too philosophical
and abstract discussions. They are indeed very practical.

Now, back to the scope of visibility. If I’m extra , then price is
the world around me. Number 5 is inside me, and is my inner
world. Well, this is not exactly right. For now, it is enough to
agree that price is outside and 5 is inside. We’ll get back to
this again, though a bit later in Section 3.4.

18

1.1 Never use -er names

The first job, after you know the scope of visibility for a future
object, is to invent a good name for its class.

But wait, let me step aside for a few minutes and discuss
something else—the difference between an object and a class. I’m
sure you understand what it is. A class is a factory of objects.
Let me convince you, it’s important.

A class makes objects, though we usually phrase that by saying a
class instantiates them:

� class Cash {
� public Cash(int dollars) {
� //...
� }
� }

�� Cash five = new Cash(5);

This is different from what we call the Factory Pattern, but only
because this new operator in Java is not as powerful as it could
be. The only thing you can use it for is to make an instance—an
object. If we ask class Cash to make a new object, we get a new
object. There is no check for whether similar objects already
exist and can be reused, there are no parameters that would
modify the behavior of new , etc.

new is a primitive control for a factory of objects. In C++, there
is also a delete operator that allows us to delete an object from
the factory. In Java and many other “more advanced” languages,
unfortunately, we don’t have that. In C++, we can ask a factory
to make an object for us, use it, and then ask the same factory to

19

destroy it:

�� class Cash {
�� public:
�� explicit Cash(int dollars);
�� };
�� Cash* five = new Cash(5); // making an object
�� std::cout << *five;
�� delete five; // destroying it

In Ruby, this idea of “a class as a factory” is most properly
expressed in the following way:

�� class Cash
�� def initialize(dollars)
�� # ...
�� end
�� end
�� Cash five = Cash.new(5)

new is a static method of class Cash , and when it’s called, the
class obtains control and makes object five for us. This object
encapsulates number 5 and behaves like an integer.

Thus, a well-known Factory Pattern is a more powerful
alternative to operator new , but conceptually they are the same.
A class is a factory of objects. A class makes objects, keeps track
of them, destroys them when necessary, etc. Most of these
features, in most languages, are implemented by the runtime
engine, not the code in the class, but it doesn’t really matter.
What we see on the surface is a class that can give us objects
when we ask for them. You may wonder, what about utility

20

classes, which don’t have any objects. We will talk more about
them later, in Section 3.2.3.

The Factory Pattern, in Java, works like an extension to the new
operator. It makes it more flexible and powerful, by adding an
extra logic in front of it. For example:

�� class Shapes {
�� public Shape make(String name) {
�� if (name.equals("circle")) {
�� return new Circle();
�� }
�� if (name.equals("rectangle")) {
�� return new Rectangle();
�� }
�� throw new IllegalArgumentException("not found");
�� }
�� }

This is a typical factory in Java that helps us instantiate objects,
using textual names of their types. In the end, we still use the
new operator. My point is that conceptually, there is not much
difference between Factory Pattern and new operator. In a
perfect OOP language this functionality would be available in the
new operator. I want you to think of a class as a warehouse of
objects, which we can get from there when needed and return
when not needed any more.

Sometimes a class is explained as a template of an object. This is
absolutely wrong, because this definition makes a class a passive,
brainless listing of code that is simply being copied somewhere
when the time comes. Even though it may technically look like
this for you, try not to think like this. A class is a factory of

21

objects, period. By the way, I’m not promoting the Factory
Pattern here. I’m actually not a big fan of it, although it is
technically a valid concept. I’m saying that we should think
about a class as an active manager of objects. We may also call it
a storage unit or warehouse—a place where we get our objects
and where we return them back.

Actually, having in mind that an object is a living creature, his
class is his mother. That would be the most accurate metaphor.

Now, back to the main subject of this section—the problem of
how to choose a good name for the class. There are basically two
approaches: the right way and the wrong way. The wrong one
would be to look at what our class objects are doing and give
their class a name based on functionality. For example, here is a
class named with this thinking in mind:

�� class CashFormatter {
�� private int dollars;
�� CashFormatter(int dlr) {
�� this.dollars = dlr;
�� }
�� public String format() {
�� return String.format("$ %d", this.dollars);
�� }
�� }

When I have an object of class CashFormatter , what does it do
for me? It formats dollar amounts to text. We should call it a
formatter, right? Isn’t that obvious?. . .

You probably noticed that I didn’t call this CashFormatter a
“he.” This is because it is not an object I would respect. It is not

22

something I can anthropomorphize and treat as a respectful
citizen in my code.

This naming principle is very wrong and very popular. I
encourage you not to follow this way of thinking. The name of a
class should not originate from the functionality that its objects
expose! Instead, a class should be named by what he is, not what
he does. This CashFormatter must be renamed to Cash or
USDCash or CashInUSD , etc. Method format() should be
renamed to usd() . For example:

�� class Cash {
�� private int dollars;
�� Cash(int dlr) {
�� this.dollars = dlr;
�� }
�� public String usd() {
�� return String.format("$ %d", this.dollars);
�� }
�� }

In other words, objects must be characterized by their
capabilities. What I am is manifested by what I can do, not by
my attributes, like my height, weight, or color.

The evil ingredient here is the “-er” suffix.

There are many examples of classes named like this, and all of
them have that “-er” suffix, including Manager, Controller,
Helper, Handler, Writer, Reader, Converter, Validator (“-or” is
also evil), Router, Dispatcher, Observer, Listener, Sorter,
Encoder, and Decoder. All these names are wrong. I’m sure
you’ve seen many of them before. Here are a few counter

23

examples: Target , EncodedText , DecodedData , Content ,
SortedLines , ValidPage , Source , etc.

The rule has exceptions though. Some English nouns have -er
suffix, which originally was placed there in order to indicate that
these nouns were performers of activities, but that was long time
ago. For example, computer or user. We don’t think anymore
about a user as of something that is literally “using” something.
It’s more like a person who our system interacts with. We don’t
understand computer as something that “computes”, instead it’s
an electronic device that is, well, a computer. But there are not
so many exceptions like that.

An object is not a connector between his outside world and his
inner world. An object is not a collection of procedures we can
call in order to manipulate the data encapsulated inside him.
Absolutely not! Instead, an object is a representative of his
encapsulated data. See the difference?

A connector is not respected, because it just passes information
through without actually being strong or smart enough to modify
it or do something on its own. To the contrary, a representative

is a self-sufficient entity who is capable of making his own
decisions and acting on his own. Objects must be representatives,
not connectors.

A class name that ends in “-er” tells us that this creature is not
really an object but a collection of procedures that can
manipulate some data. It is a procedural way of thinking that is
inherited by many object-oriented developers from C, COBOL,
Basic, and other languages. We are using Java and Ruby now,
but we are still thinking in terms of data and procedures.

So, how do we name a class properly?

24

Look at what its objects will encapsulate and come up with a
name for this group—simple as that. Let’s say you have a list of
numbers and an algorithm that tells you which number is prime.
If you want to see a list of only prime numbers, don’t call this
class Primer or PrimeFinder or PrimeChooser or
PrimeHelper . Instead, name him PrimeNumbers (this is Ruby,
just for diversity):

�� class PrimeNumbers
�� def initialize(origin)
�� @origin = origin
�� end
�� def each
�� @origin
�� .select { i prime? i }
�� .each { i yield i }
�� end
�� def prime?(x)
�� # ...
�� end
�� end

See what I mean? The class PrimeNumbers behaves like a list of
numbers but returns only prime ones. Here is how we would
design similar functionality in C, using a purely procedural style:

�� void find_prime_numbers(int* origin,
�� int* primes, int size) {
�� for (int i = 0; i < size; ++i) {
�� primes[i] = (int) is_prime(origin[i]);
�� }
�� }

25

Here, we have a procedure called find_prime_numbers that
accepts two arrays of integers, goes through the first array to find
all prime numbers, and marks their positions in the second array.
There is no object involved. This is a purely procedural approach,
and it is wrong. Well, it is still right in procedural languages, but
we are in the OOP world.

This procedure is a connector between two pieces of data: an
original list of numbers and a list of prime numbers. An object is
something different. An object is not a connection; he is a
representative of other objects and their combinations. In the
example above, we create an object of class PrimeNumbers that
behaves like a collection of numbers, but only prime numbers will
be seen in the collection.

When your object is, in reality, the procedure
find_prime_numbers , you are in trouble. An object is not
supposed to work as a collection of procedures, even though
technically he may look very similar. While the PrimeNumbers
class encapsulates a list of numbers, it doesn’t allow me to
manage that list or find something in it. Instead, he says, “I am
the list now!” When I need to do something with the list, I ask
my object, and he decides what to do with my request. If he
wants, he will get some data from the original list. If not, it’s up
to him.

PrimeNumbers is a list of numbers, not a bunch of methods that
can help me manipulate the list. He is a list !

Let’s summarize this section: When it’s time to give a name to a
new class, think what he is, not what he does. He is a list, and he
can pick an element by number. He is an SQL record, and he can
fetch a single cell as an integer. He is a pixel, and he can change
his color. He is a file, and he can read his contents from the disc.

26

He is an encoding algorithm, and he can encode. He is an HTML
document, and he can be rendered.

What I do and who I am are two different things.

Also, yet another bad class name is the one that ends with Util
or Utils . They are so called “utility classes” and will be
discussed in Section 3.2.3.

27

