Volatility Metric to Detect Anomalies in Source Code
Repositories

Yegor Bugayenko
yegor256@gmail.com
Huawei
Moscow, Russia

Abstract

A new metric was introduced to calculate the distance be-
tween actively modified files in a source code repository and
the files, which are rarely modified and may be considered
abandoned or even dead. It was empirically demonstrated
that larger repositories have larger values of the introduced
metric. The metric may be used for earlier detection of code
maintenance anomalies and helping software developers
make the decision of splitting the repository into smaller
ones in order to prevent maintainability issues.

CCS Concepts: « Software and its engineering — Main-
taining software.

Keywords: Metrics, Software Size, Software Maintainability

ACM Reference Format:

Yegor Bugayenko. 2021. Volatility Metric to Detect Anomalies in
Source Code Repositories. In Proceedings of the 1st ACM SIGPLAN
International Workshop on Beyond Code: No Code (BCNC °21), October
17, 2021, Chicago, IL, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3486949.348696 1

1 Introduction

Most software development projects keep their source code
in Git [10], which is the de-facto standard in the industry
at the moment, or similar version control systems. Every
system, including open source products like Git, Subversion,
and Mercurial, and commercical tools like StarTeam™ or
ClearCase™ have the same feature: keeping track of the
changes made to the source code files, also known as “logs”

Git logs provide information about every single change
made by every software developer during the entire course
of the project. Using this information it’s possible to measure
which files are being modified more frequently than others.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

BCNC ’21, October 17, 2021, Chicago, IL, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9125-2/21/10...$15.00
https://doi.org/10.1145/3486949.3486961

On the other hand, it’s also possible to spot files that are
rarely modified and may be considered either as abandoned
or stable code. Fontana et al. [6] claims that the gap between
actively modified code and the code that is stable should be
as narrow as possible in a properly maintained repository.

Indeed, abandoned code may be considered as a threat to
the maintainability of the entire project, because its lifecycle
is not aligned with the lifecycle of active code, which is
modified more intensively. Later, when a modification is
required to the abandonded code, a programmer may have
difficulties finding out the principles of design of the code
and making sure new modifications don’t break it.

We introduce a Volatility metric to measure the relation-
ship between the amount of actively modified files and files
which stay in the repository for a long time without modifi-
cations. The hipothesis is that the Volatility is related to the
size of the repository: the larger the repository the higher
the volatility. Larger repositories are an obvious threat to
code maintainability. Thus, if the relationship between size
and Volatility exists, the new metric can be used to identify
code anomalies and detect badly maintained repositories.

In order to validate the hipothesis and demonstrate how
the metric works we applied it to 240 public Java repositories
from GitHub and analyzed its impact on two other character-
istics of each repository: the number of files in a repository
and the size of it in bytes.

Larger repositories shown larger values of the metric.

The paper is organized as follows. Sec. 2 defines various
terms used in the paper. Sec. 3 covers related work in the
areas of code change metrics and empirical analysis of source
code repository size. Sec. 4 covers the source code volatility
metric. Sec. 5 covers our empirical case study of 240 Java
source code repositories. Sec. 6 covers limitations of both
the metric and the study. Finally, we summarize our study
in Sec. 7.

2 Background

In this paper, we use several terms regarding version con-
trol systems and software metrics. The type of metric we
are proposing belongs to the family of source code change
metrics, which analyze the history of changes in a source
code repository [3, 5]. A change in a version control system,
such as Git, is an atomic modification to the source code file

https://orcid.org/0000-0001-6370-0678
https://doi.org/10.1145/3486949.3486961
https://doi.org/10.1145/3486949.3486961

BCNC ’21, October 17, 2021, Chicago, IL, USA

made by a software developer locally on his/her machine
and then committed to the repository.

Each version control system, including Git, provides an
instrument for retrieving the entire history of changes from
a repository. We use git log for Git.

GitHub™ (currently owned by Microsoft™) is one of the
largest platforms for open source projects. GitHub provides
free access to all public Git repositories, which makes it
possible to analyze Git histories.

3 Related Work

“Code change metrics mined from source control repositories
have proven to be the most reliable predictors of bugs in con-
temporary software engineering research,” says Muthuku-
maran et al. [14].

Code churn is one of the simplest metric in the family,
which counts all lines being modified (added, edited, and
deleted) during the entire lifetime of a project [13]. It was
demonstrated by Shin et al. [15] how code churn, together
with complexity and other developer activity metrics, is re-
lated to software vulnerabilities. There are modifications of
code churn, for example taking into accout socio-technical
aspect of the metric, as suggested by Meneely and Williams
[11].

Yet another simple metric from the family is the number
of changes being made to a particular file, class, method or
line of code, which is used for example by Demeyer et al. [4]
in order to analyze the effect of refactorings.

Moser et al. [12] made a comparative analysis of 17 change
metrics to understand their efficiency for defect prediction:
number of distinct authors per file, total modifications per
file, total additions per file, maximum number of files com-
mitted together, and others.

Biazzini and Baudry [2] introduced a number of metrics to
analyze Git history (specifically related to GitHub), such as
unique-count, unique-ratio, VIP-count, VIP-ratio, scattered-
count, pervasive-count and a few others. Some of the metrics
are supposed to be calculated for a repository together with
its forks, while others may be calculated for a single reposi-
tory history.

Batista et al. [1] provided a detailed analysis of existing
metrics and introduced a new one to measure, by looking at
Git/GitHub project commit history, how “close” developers
stay to each other and form pairs.

Fontana et al. [6] suggested to measure “File Volatility”
as the ratio between the maximum number of changes hap-
pened to a file line and the number of all changes to the
file since its creation. Going further, they also suggested to
calculate “Repository Stability” metric as a relationship be-
tween active files (with high File Volatility) and closed files.
The also concluded that repositories where most files change
over time can suffer from organizational or design issues.

Yegor Bugayenko

To our knowledge, the metric introduced in this research,
in order to detect anomalies in source code repository main-
tenance, has never been suggested.

4 Metric

First, by looking at the Git history, it is observed how many
times every source code file out of N was touched during
the lifetime of the repository (excluding the files that don’t
exist in the repository anymore):

T=[tits..., tnN] (1)

Here, t; is the number of commits found in the repository,
which modified the i-th file. Then, the entire interval between
T (the maximum value) and T (the minimum value) is divided
to Z (the input parameter of the method) equivalent groups:

§=(T-1T)/z ()

G=191.92---.9z])
N

gi= D lix(E=1) <t <jxd] (4)

i=1

Here, g; is the total number of ¢;, which are larger than
JjXx(8—1) and smaller than jx . In other words, T, the entire
set of measurements, is sorted and then split into Z sectors,
where g; is the counter of measurements that belong to the
sector j.

Then, the mean p is calculated as:

h=z 0 ©)

Jj=1

Finally, the variance is calculated as:

4
Var(g) = - 3 lg; — ul ©
=1

The variance Var(g) is the Volatility of the source code.
The smaller the Volatility the more cohesive is the repository
and the smaller the amount of the abandonded code inside
it. The metric demonstrates how large is the gap between
intensively modified files and the abandoned ones: the larger
the variance, the wider the graph, and the larger the gap. A
repository with a thousand files all being modified at the
same pace would have a Volatility of zero. On the other
hand, a repository with just a few files, where one of them
is modified a thousand times, while others are modified just
once, will have the Volatility of a miillion.

5 Empirical Results

A list of Java repositories were retrieved from GitHub via
their public APL The first 240 repositories were taken, which

Volatility Metric to Detect Anomalies in Source Code Repositories

satisfied the selection criteria: 1) more than 1,000 GitHub
stars, 2) more than 200 Kb of data, 3) not archived, and 4) pub-
lic. The list included popular Java open source products, such
as Spring, RxJava, Guava, MyBatis, Clojure, JUnit, Lombok,
Graal, Selenium, Spark, Mockito, Neo4j, Jenkins, Netty, and
others.

The Volatility metric was calculated for each repository,
using the formula explained above (the value of Z was set to
64). Then, a few other metrics were collected for each repos-
itory and their values were compared with the Volatility.

Fig. 1 demonstrates the relationship between the num-
ber of files in the repository (M;) and its Volatility (V). Both
axixes of the graph have logarithmic scales, for the sake of vi-
sual understandability: the difference between the minimum
and the maximum values of the Volatility is logarithmically
large. It is visually obvious that repositories with larger num-
ber of files tend to have higher values of the Volatility metric.

logio(V) centnt
6 + .. .'-: ‘; ® e
footw et
4+ w o est FAR S
. e O, .

L. RN R I
AR

walente logio (M)

2 2.5 3 3.5 4

Figure 1. The relationship between the number of files in
the repository and its Volatility (Z is set to 64)

Fig. 2 demonstrates the relationship between the loga-
rithm of the size of the Git repository in bytes (M;) and
the logarithm of its Volatility (V). It is visually obvious that
binary-size larger repositories tend to have higher values of
the Volatility metric.

log1o(V) I
of TR
4 | ! .
21 o, .

:‘ *&e. ’ ‘) ‘ ‘ ‘10910(]‘\42)

55 6 6.5 7 7.5 8 8.5 9

Figure 2. The relationship between the size of the Git repos-
itory in bytes and its Volatility (Z is set to 64)

Fig. 1 demonstrates the same relationship as Fig. 1, but the
parameter of the Volatility formula is set to 32 instead of 64.
The trend of the graph didn’t change much.

Fig. 1 demonstrates the same relationship as Fig. 1, but
this time the parameter of the Volatility formula is increased

BCNC ’21, October 17, 2021, Chicago, IL, USA

log1o(V) ceotty

67 DR

e 10910‘(M1)

2.5 3 3.5 4

Figure 3. The relationship between the number of files in
the repository and its Volatility (Z is set to 32)

to 128 instead of the original value of 64. The trend of the
graph didn’t change much.

logio(V) AN
6| ALY ¥
4 4
2+ L rr P R
. ...‘,"?"-:h' ,:..
. l.-:‘-"--':".' ° | | 10910‘(M1)
T2 2.5 3 3.5 4

Figure 4. The relationship between the number of files in
the repository and its Volatility (Z is set to 128)

6 Discussion

It was demonstrated that the size of the source code is an
important factor negatively affecting maintainability and
other quality characteristicts. For example, Heitlager et al.
[7] suggested to consider “volume” (the number of lines
per file, the number of methods in a class, and so on) as a
primary contributor to an aggregate maintainability index
of a software because “it is fairly intuitive that the total
size of a system should feature heavily in any measure of
maintainability”

However, the discussion of whether larger repositories are
a better practice than smaller ones is still open. Google, for
example, advocates for larger ones, known as “monolithic,”
which tend to keep many modules and components in one
Git space, simplifying dependencies management [9]. As was
demonstrated in our research, larger repositories will tend to
have maintenance anomalies: some parts of source code will
be changed much less frequently than other parts. Moreover,
the distance between “popular” parts and “abandoned” ones
will grow when the size of the repository grows.

These maintenance anomalies will lead to maintability
and quality problems mostly because it will be difficult for
programmers to quickly switch between different contexts

BCNC ’21, October 17, 2021, Chicago, IL, USA

inside one repository: one set of files is being modified ev-
ery day, while another one stays untouched for months. A
programmer will try to avoid making changes to the part
that is abandonded because it won’t look like code that is
expecting changes.

Also, maintenance anomalies is a sign of differences in cus-
tomer demand for the source code components. The module
with smaller frequency of changes must be released less fre-
quently than the module that is being edited every day. Not
paying attention to the growing Volatility of the repository
means ignoring anomalies and, because of that, redundant
releasing of the code that doesn’t require new releases. More-
over, releasing larger software modules usually means longer
build cycles, which are the key failure factor of continuous
delivery, as explained by [8]. Getting rid of maintenance
anomalies may help reduce build cycles.

It would be beneficial in future researches to analyze the re-
lationship between Volatility and other parameters of source
code repositories, such as the programming language being
used, the popularity in GitHub (the number of stars and
forks), the total number of lines of code, the average number
of lines of code per file, the number of Git commit authors,
the total age of the repository, the number of issues and pull
requests in GitHub, and many others. Would be interesting
to empiricially demonstrate which of these parameters (or
combinations of them) impact the behavior of Volatility and
in which direction.

7 Conclusion

A new source code Volatility metric was introduced and
applied to 240 open source Java repositories from GitHub. It
was empirically demonstrated that larger repositories have
higher values of the Volatility metric.

The source code of Ruby and Python scripts used to do
the research is available in GitHub repository:
yegor256/volatility-vs-size.

References

[1] Natércia A Batista, Guilherme A Sousa, Michele A Brandio, Ana
Paula C da Silva, and Mirella Moura Moro. 2018. Tie strength metrics
to rank pairs of developers from github. Journal of Information and
Data Management 9, 1 (2018), 69-69.

Yegor Bugayenko

[2] Marco Biazzini and Benoit Baudry. 2014. “May the fork be with you”™:
novel metrics to analyze collaboration on GitHub. In Proceedings of
the 5th International Workshop on Emerging Trends in Software Metrics.
37-43.

Garvit Rajesh Choudhary, Sandeep Kumar, Kuldeep Kumar, Alok

Mishra, and Cagatay Catal. 2018. Empirical analysis of change metrics

for software fault prediction. Computers & Electrical Engineering 67

(2018), 15-24.

[4] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. 2000. Finding
refactorings via change metrics. ACM SIGPLAN Notices 35, 10 (2000),
166-177.

[5] NE Fenton and SL Pfleeger. 1997. Software Metrics.

[6] Francesca Arcelli Fontana, Matteo Rolla, and Marco Zanoni. 2014.

Capturing Software Evolution and Change through Code Repository
Smells. In International Conference on Agile Software Development.

Springer, 148-165.

Ilja Heitlager, Tobias Kuipers, and Joost Visser. 2007. A practical model

for measuring maintainability. In 6th international conference on the

quality of information and communications technology (QUATIC 2007).

IEEE, 30-39.

[8] Jez Humble and David Farley. 2010. Continuous Delivery: Reliable

Software Releases through Build, Test, and Deployment Automation

(Adobe Reader). Pearson Education.

Ciera Jaspan, Matthew Jorde, Andrea Knight, Caitlin Sadowski, Ed-

ward K Smith, Collin Winter, and Emerson Murphy-Hill. 2018. Advan-

tages and disadvantages of a monolithic repository: a case study at
google. In Proceedings of the 40th International Conference on Software

Engineering: Software Engineering in Practice. 225-234.

[10] Jon Loeliger and Matthew McCullough. 2012. Version Control with Git:
Powerful tools and techniques for collaborative software development.
O’Reilly Media, Inc.

[11] Andrew Meneely and Oluyinka Williams. 2012. Interactive churn
metrics: socio-technical variants of code churn. ACM SIGSOFT Software
Engineering Notes 37, 6 (2012), 1-6.

[12] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. 2008. A com-
parative analysis of the efficiency of change metrics and static code
attributes for defect prediction. In Proceedings of the 30th international
conference on Software engineering. 181-190.

[13] John C Munson and Sebastian G Elbaum. 1998. Code Churn: A measure
for estimating the impact of code change. In Proceedings. International
Conference on Software Maintenance (Cat. No. 98CB36272). IEEE, 24-31.

[14] K Muthukumaran, Abhinav Choudhary, and NL Bhanu Murthy. 2015.
Mining GitHub for novel change metrics to predict buggy files in
software systems. In 2015 International Conference on Computational
Intelligence and Networks. IEEE, 15-20.

[15] Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A Os-
borne. 2010. Evaluating complexity, code churn, and developer activity
metrics as indicators of software vulnerabilities. IEEE transactions on
software engineering 37, 6 (2010), 772-787.

E

—

[7

—

[9

—

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Metric
	5 Empirical Results
	6 Discussion
	7 Conclusion
	References

