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Abstract

Natural language is the dominant form of writing software
requirements. Its essential ambiguity causes inconsistency
of requirements, which leads to scope creep. On the other
hand, formal requirements specification notations such as
Z, Petri Nets, SysML, and others are difficult to understand
by non-technical project stakeholders. They often become
a barrier between developers and requirements providers.
The article presents a controlled natural language that looks
like English but is a strongly typed object-oriented language
compiled to UML/XMI. Thus, it is easily understood, at the
same time, by non-technical people, programmers, and com-
puters. Moreover, it is formally verifiable and testable. It
was designed, developed, and tested in three commercial
software projects in order to validate the assumption that
object-oriented design can be applied to requirements en-
gineering at the level of specifications writing. The article
outlines key features of the language and summarizes the
experience obtained during its practical application.

CCS Concepts: « Software and its engineering — Re-
quirements analysis.
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1 Introduction

Software Requirements Specification (SRS) should be cor-
rect, unambiguous, complete, consistent, ranked for impor-
tance and/or stability, verifiable, modifiable, and traceable [9].
Many times, it was demonstrated that an SRS document that
lacks some of these properties has a high likelihood of be-
coming a root cause of scope and schedule problems in a
project [5, 11, 17].

Natural Language (NL) is the main presentation mean
in industrial requirements documents [10, 15], mostly due
to its flexibility. Very often, contributors to requirements
specifications are not experts in requirements engineering
(RE). Impreciseness and flexibility of NL, being its advantage
in informal human communications, turns into a serious
drawback in RE. Problems that appear in NL requirement
documents include ambiguity, vagueness, complexity, dupli-
cation, wordiness, and untestability [11].

To overcome problems associated with NL, some experts
advocate the use of other notations for the specification of re-
quirements, such as Z [18], SysML, UML [2], Petri Nets, and
others. However, use of any of these non-textual notations
often requires complex translation of the source require-
ments, which can introduce further errors. Such translation
of requirements can serve to create an extra “language bar-
rier” between developers and stakeholders. There is also a
training overhead associated with the introduction of many
notations [11].

A desired solution to the outlined problem would be a
Controlled Natural Language (CNL), which would look like
NL, but be precise, unambiguous, and consistent. A few CNLs
were introduced and developed over the last decades. Closest
to our work are Attempt to Controlled English (ACE) [8],
Simplified Technical English (STE) [1], Easy Approach to Re-
quirements Syntax (EARS) [11], Boeing’s Computer Process-
able Language [6], and Schwitter’s Processable ENGlish [14].
However, there are a few critical drawbacks that exist, to
some degree, in all of these CNLs.

First, none can be mapped to objects hierarchy or a UML
diagram. They are focused more on linguistic instead of
object-oriented semantic. Some CNLs, like ACE, are based
on first-order logic and can be mapped to Lisp or other func-
tional languages. However, as of today, object-oriented sys-
tems dominate, especially in enterprise applications domain.
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Second, they all require sequential flow of language con-
structs, while in modern Agile software projects wiki pages
is one of the most popular storage for requirements docu-
mentation, instead of files or databases. Wiki pages, by defini-
tion, are not sorted and may contain pieces of requirements
documentation that should be combined into a complete
document in a random order.

Third, most do not allow uncertainty, while requirements
development and requirements management processes need
to be able to mark requirements as uncertain (also known
as “TBD”). Requirements engineers need to have an ability
to add a requirement into scope at one iteration and refine
it later in a few iterations. This process, called “progressive
elaboration” of requirements [3], must be supported by a
CNL.

To overcome these drawbacks, a new language was intro-
duced, implemented, and tested. Sec. 2 of the article presents
the language and gives a simple example of its use, specify-
ing requirements of a sample software system. Sec. 3 briefly
outlines lexical rules of the language. Sec. 4 describes the
syntax using extended Backus-Naur form and gives a few
practical examples. Sec. 5 outlines a semantic layer of the
compiler that is intended to detect vast majority of inconsis-
tencies in a requirements document. Sec. 6 gives an example
of to-UML mapping implemented by the compiler. Sec. 7
presents a numeric metric that measures ambiguity in a re-
quirements specification and could be used as a guidance for
system analysts. Sec. 8 presents empirical results obtained
from three commercial Java web projects over the last few
years. Sec. 9 presents conclusions and observations made by
the author.

2 Controlled Natural Language

Requs!’ is an object-oriented CNL that resembles English and,
because of that, can be read and understood by compilers, sys-
tem analysts, end-users, and business people. Fig. 1 presents
an example of a short requirements definition document that
describes a calculator that asks its user for two floating point
numbers and returns the result of their division.

The example has some uncertainty expressed with plain
English text sentences in double quotes. This is an impor-
tant feature that distinguishes the designed language from
other CNLs. Every class and method may be specified either
formally or by so-called “informal” text in double quotes.
In NL requirements specifications, such uncertainties are
usually marked with TBD (“to be determined”) placehold-
ers [12]. Java equivalent of them are TODO comments. Infor-
mal texts in double quotes are also used to make references
from functional requirements to customer needs, interface
specifications, supplementary documents, etc.

https://www.requs.org
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SuD includes: user as User.

Fraction is a "math calculator".

Fraction needs:

numerator as Float, and

denominator as Float.

UC1 where SuD divides two numbers:

1. The user creates Fraction (a fraction);

2. The fraction "calculates" Float
(a quotient);

3. The user "receives results" using
the quotient.

UC1/2 when "division by zero":

1. The user "fails" using "can't
divide by zero".

Figure 1. Software Requirements Specification of an example
math calculator

SuD (System under Development) is a top level class that
encapsulates all other objects and may not be “created” (sim-
ilar to a singleton in OOP). The Float is a built-in class, as
well as the Text, the Integer, and a few others. Classes have
methods, which are defined as use cases with a single main
flow and a few alternative flows [7].

In the example, the use case UC1 is a method of the class
SuD and its name is “divides two numbers.” Every flow step
in a use case can either a) call other method, or b) create
(instantiate) an object. In the example, the step 1 of the UC1 is
creating a new object fraction of the class Fraction, while
the step 2 is calling a method “calculates” of the fraction
in order to get back an object named quotient of the class
Float.

Every clause ends with a period. Order of clauses is not
important and this is yet another important feature of the
language. In the example clause at the tenth line, defining an
alternative flow may appear before the use case itself. The
compiler will understand them correctly.

Fig. 2 contains a close equivalent program in Java.

Requs, in its current version, doesn’t have any lexical or
syntax constructs for non-functional requirements (NFRs)
specification. This is a subject for future research and im-
plementation. The biggest expected challenge in this area
is inventing (or borrowing) a method of quantification of
NFRs.

3 Lexical Analysis

There are a few main lexical terms in Requs, which can be
defined by regular expressions:

| <class> ::= /[A-Z1[A-Za-z]+/

| <word> ::= /[a-z]+/

| <use-case-ID> ::= /UC[@-9\\.]+/
| <flow-ID> ::= /[0-9]+/

| <informal> ::= /"([*"I\\")+"/
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class User {
Fraction createsFraction() {3}
void receivesResult(Float quotient) {3}
void fails(String message) {3}
}
class Fraction {
private final float numerator;
private final float denumerator;
Fraction(float num, float denum) {
this.numerator = num;
this.denumerator = denum;
3
Float quotient() throws DivisionByZero {
3

}
class SuD {

private final User user;
void dividesTwoNumbers() {
Fraction fraction =
this.user.createsFraction();
try {
this.user.receivesResult(
fraction.quotient()
);
} catch (DivisionByZero ex) {
this.user.fails(
"denominator can't be zero"
)5
3
3
}

Figure 2. Java equivalent of Requs requirements document
from the Fig. 1

In Fig. 1, the entities SuD, Fraction, Float, and User are
classes. They start with capital letters and contain only letters
(both lowercase and capital). The user, the fraction, and
the quotient are the variables bound to instances of classes.

Besides, there are a few reserved words, which may have
special meaning in certain places of the text, including the, a,
includes, requires, etc. A full list of them is defined below
in Sec. 4.

4 Syntax Analysis

A program consists of clauses (similar to statements in other
languages). Every clause ends with a period, like English
sentences. There are four types of clauses: class declaration,
class construction, method declaration, and alternative flow
declaration.

| <SRS> ::= <clause>+
| <clause> ::= <class-declaration>
| | <class-construction>
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| | <method-declaration>
| | <alternative-flow-declaration>

4.1 Class Declaration

Class declaration is a clause that declares a class as a sub-
class of another class or as a standalone class. The central
part of the clause is an is a term:

| <class-declaration> ::= <class>
| <is-a> <parent-class>
| <parent-class> ::= <informal> | <class>
| <is-a> ::= “is' ( “a' | “an')
The second line in Fig. 1 declares the class Fraction with-
out any super-class but with an informal description "math

calculator".

4.2 Class Construction

Class construction is a clause that defines arguments of
a class constructor, if necessary. By default, a constructor
doesn’t need any arguments:

| <class-construction> ::= <class> <includes>

| ":' <slots>

| <includes> ::= “includes' | “needs’

| <slots> ::= <slot> ( ~,' <slot> )*

| <slot> ::= <variable> ( “as' <class> )?
| <variable> ::= <word> ~-s'?

Fig. 1 defines the arguments of the constructor only for the
Fraction class. The class User don’t have any arguments.
The class SuD is a pre-defined class without arguments. The
class Float is a pre-defined class with one argument.

Class without arguments in constructor normally means
that it represents an entity outside of system scope, like the
User.

Cardinality of associations between objects is configured
by the -s prefix at the end of variable name. There are only
two possible relationships types supported: one-to-one and
one-to-many.

4.3 Method Declaration

Method declaration is a clause that defines a method for a
class:

<use-case-ID> “where'
<flows>

<method-declaration> ::=
<class> <signature> ~:'

<signature> ::= ( <word>+ | <informal> )
<subject>? <using>?
<subject> ::= <class> <binding>?

“the' <variable>

<binding> ::= “(' “a' <variable> °)'
<using> ::= “using' <subject>

( “and' <subject> )=
<flows> ::= <flow> ( ~;' <flow> )+
<flow> ::= <flow-ID> ~.'

(

“The' <variable> <signature>
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L
| “Fail'
L)

For traceability, all methods have unique names across the
entire SRS starting with the UC (use case). In other words,
methods are use cases owned by classes.

“since' <informal>

4.4 Alternative Flow Declaration

Alternative declaration is a clause that defines an alternative
flow of a method:

| <alternative-flow-declaration> ::=
| <use-case-ID> */' <flow-ID>
| “when' <informal> ~:' <flows>

Alternative flow explains exceptional situations in one of
the flows of a method it refers to.

5 Semantic Analysis

In the language, as in any pure object-oriented language,
everything is an object. Objects are grouped into classes.
They have only methods and no other public properties and
may be bound to variables. It is a strongly typed language.

The main goal of semantic analysis in the language is to
make sure that: a) method calls match method declarations,
b) object creating have necessary constructor arguments,
¢) variable bindings precede their usage, d) methods return
objects of required classes, and e) failures are handled by
alternative flows. If any of these checks fail, the entire docu-
ment is rejected.

5.1 Method Calls Match Declarations

Every method call in every use case should either a) be in-
formal (the 8th, 9th, and 11th lines in the example at Fig. 1),
b) formally refer to the method declared in a class, or ¢) con-
struct an instance of a class using a built-in method creates
(the 7th line in the example).

By such a strict linking of use case flows and class meth-
ods, a consistency of the entire document is achieved. It is no
longer possible to refer to some functionality in a use case,
which doesn’t exist. A rare mistake during the requirements
development phase — but very popular during requirements
management and maintenance — when one part of the doc-
ument is updated aside from another part.

5.2 Object Creating Have Necessary Constructor
Arguments

Every time an object is instantiated using the creates method,
the compiler checks that all required parameters of required
classes are supplied. Again, it is a very important validation
that prevents inconsistency during requirements mainte-
nance and refinement. In the example, class Fraction re-
quires two parameters to be instantiated. Any attempt to
create a fraction with just one parameter or two parameters

14

Yegor Bugayenko

of classes other than the Float would be rejected by the
compiler.

5.3 Variable Bindings Precede Their Usage

A variable is declared and bound to its value by means of an
article a. The seventh line of the example declares a variable
fraction, which is later used with article the (the eighth
line). If, by mistake, variable declaration is removed from
the first step of the use case or the entire step is deleted,
compilation will fail. Consistency of the document is ensured
by this constraint.

5.4 Methods Return Objects of Required Classes

Similar to the check of parameter classes, every returned
object is verified for compliance with the class expected. The
eighth line of the example expects method “calculates” of
the class Fraction to return an object of class Float. The
method is still informal and is not defined in the require-
ments document, but when a requirements expert decides to
make it formal and specify its details in a new use case, she
has to make sure it returns an instance of the class Float.
Otherwise, the compiler would complain with an error.

5.5 Failures Are Handled by Alternative Flows

Every method in the object-oriented way may throw an
exception, using a build-in method Fail since. The method
has one parameter of the class Text, which explains the
reason. In the example in Fig. 1, method “calculates” of the
class Fraction may throw an exception and it is handled
by an alternative flow. In the language, all exceptions are
checked, which means that they should be handled explicitly,
by means of alternative flows of use cases.

6 UML and XMI

When semantic analysis is done the specification looks like
an object of the class SuD that encapsulates other objects
and methods. This object hierarchy is convertible to UML
diagrams [2]. Specification in Fig. 1 would be converted to
the following UML diagrams (to save space, the list is limited
to the three most interesting diagrams):

e Class diagram, in Fig. 3

e Object diagram, in Fig. 4

e Sequence diagram of “divides two numbers” method,

in Fig. 5
Every UML diagram is a formal interoperable document

in XMI [13] that can be rendered in web, in KTEX, in PDF,
or translated to Java or any other object-oriented language.
Fig. 6 shows an example XMI for the class diagram.

7 Ambiguity
With this approach, ambiguity of requirements becomes a

formally measurable metric. It is calculated as a division of
informally defined methods to the total number of methods:
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SuD

divides two numbers

User Fraction Float
creaFes calculates
receives results
fails

Figure 3. UML class diagram for the sample project

:SuD

.

User
:Float | - - receives results- - -
.

N -
\ -

-
creafes
-

-

\
calculates
\

N s
\ -
-

numerator denumerator

Figure 4. UML object diagram for the sample project

’ fraction ‘ ’ quotient ‘
create
try/catch)
calculates

quotient

receives result

division by zero

-0

receive

Figure 5. UML sequence diagram for “divides two numbers”
method of class SuD of the sample project
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<uml:Model xmi:version="2.1"
xmlns:uml
="http://www.eclipse.org/uml2/2.0.0/UML"
xmlns:xmi
="http://schema.omg.org/spec/XMI1/2.1">
<packagedElement name="SuD"
xmi:type="uml:Class">
<ownedOperation name="divides two numbers"
xmi:type="uml:Operation">
<ownedParameter direction="return"
xmi:type="uml:Parameter"/>
</ownedOperation>
</packagedElement>
<packagedElement name="User"
xmi:type="uml:Class">
<ownedOperation name="creates fraction"
xmi:type="uml:Operation">
<ownedParameter direction="return"
xmi:type="uml:Parameter"/>
</ownedOperation>
</packagedElement>
C...]
</uml:Model>

Figure 6. XMI representation of a UML diagram; a sample
part

A= Minformal (1)
Miotal
In Fig. 1, ambiguity equals to 3/4 since there are four
methods in total and three of them are defined informally.
A method is formally defined when its signature consists
of one specially reserved verb creates and an optional list
of constructor arguments, as in the seventh line of Fig. 1. A
formally defined method doesn’t have any ambiguity since
it is absolutely clear what is expected as its input and output.
All it does is instantiate a new object and bind it to a variable.
In Java that would mean calling a constructor.
The higher the ambiguity, the more system analysis is

, 0<A<L1

required for the requirements document to make it unam-
biguously understandable by everybody in a project. The
ultimate goal of a system analyst is to break down require-
ments until a target ambiguity is reached. In the commercial
projects explained in Sec. 8, the A metric was used for the
planning of RE activities. Every iteration a group of RE spe-
cialists had a goal of decreasing the ambiguity until it reached
a given value. It was not clear at the beginning how much
work that would take, but soon the RE team obtained that
knowledge and became capable of estimating complexity of
work using A metric.

For example, in one of the projects, a decrease of ambi-
guity from 0.86 to 0.8 took five working hours of a system
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Table 1. Empirically collected data from three commercial
projects

P1 P2 P3
Total classes 39 12 19
Total methods 19 7 24
Total Java classes 80 75 295
Ambiguity achieved 0.80 0.95 0.68
Work spent on RE, staff-months 0.53 0.21 0.86
Total SRS contributors 4 7 2
Non-empty lines of Java code 9.5K 10K 32K
Project duration, months 7 26 11
Project budget, staff-months 55 75 95

analyst. During this work, eight tickets were produced for
discussion, each of which took from one to three hours of
work of requirements providers and other project stakehold-
ers. Thus, a total estimate of 0.06 decrease of ambiguity costs
approximately twenty hours of work. This is a very rough
estimate and is applicable only to the project where it was
measured, but in other projects it is possible to calculate
similar metrics and manage RE activities according to them.

It was empirically observed that an SRS document be-
comes acceptable for implementation and doesn’t confuse
programmers when its ambiguity is less than 0.7. Of course,
it is recommended to start implementation at earlier stages
of a project, when ambiguity is rather higher, and generate
requests for the RE team to improve SRS at certain places,
where ambiguity has its peaks.

8 Empirical Results and Future Work

The language was used in three commercial projects. The
numbers empirically collected are presented in Table 1.

The results collected from three software projects demon-
strated that combining object-oriented paradigm with a CNL
makes it possible to specify software requirements in a pre-
dictable and verifiable manner. The quality of requirements
documentation was higher than in previously developed
projects, according to the estimates of defects reported dur-
ing project development and release phases.

It seems reasonable to analyze the effectiveness of the
created CNL on a larger number of projects, including open
source ones. In order to make such an analysis a methodol-
ogy would have to be designed, to compare the effectiveness
of different methods of requirements specification and iden-
tifying the advantages and disadvantages of each one.

9 Conclusions

A few important observations were made during commercial
usage of the language. First, SRS document is much shorter
than discussions around it (usually kept in bug tracking “tick-
ets”). It takes days to discuss one small change in a class and
just a few minutes to apply the change. Because of that, a
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traceability from SRS to discussion tickets is an important
feature that has to be supported by a documentation man-
agement software. It is crucial to have an ability to trace back
every requirement and remember the reasons behind it.

Second, complete and detailed error reporting is an im-
portant aspect of the compiler. Initial versions of it had a
technical and simplistic errors reporting mechanism that
didn’t give enough information to system analysts and busi-
ness owners. They were confused trying to edit a part of SRS
in one of wiki pages and receiving a message like “incorrect
syntax on line 45 Such situations required immediate at-
tention from programmers. Soon it became obvious that the
compiler, unlike programmers-oriented compilers of Java
or C++, has to produce user friendly error messages (and
warnings). In further versions of the language, a much richer
reporting is going to be implemented.

Third, developing requirements specification with the lan-
guage requires RE engineers to understand key principles
of “object thinking” [4, 16], like “everything is an object”
and “objects expose behavior, not state” Initial training was
required in two projects.
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