
The Impact of Constructors on the Validity of Class
Cohesion Metrics

Yegor Bugayenko

Huawei Technologies Co., Ltd.

Russian Research Institute,

Moscow, Russia

yegor.bugayenko@huawei.com

Abstract—Class cohesion is a measure of the degree to which a
class’s inner elements, like methods and attributes, are bound or
related to one another. There have been over thirty different
formulas proposed in order to calculate the metric. None of
them are explicitly designed to deal with constructors in any
different way than with regular methods—they simply treat them
as identical entities. However, as many object-oriented theorists
say, constructors play a very specific role in object life-cycle. In
the scope of this empirical research, five different formulas were
implemented in two ways: including constructors and excluding
them. Then both set of formulas were applied to the same
set of 1000 mid-size open source Java projects. The results
obtained demonstrated how much of a distraction constructors
were bringing into metric calculations.

I. INTRODUCTION

Class cohesion, as a degree of “how tightly bound or related

its internal elements are to one another,” [31] is considered

as one of the most important object-oriented software at-

tributes [2], [23], [31]. A class with low cohesion has disparate

and non-related members; cohesion can be used to identify the

poorly designed classes [2], [4], [10].

There are over thirty different metrics introduced so far to

measure functional [14], [32] cohesion of a class [13], [22].

All of them in one way or the other analyze the amount and the

structure of class attributes and methods in order to calculate

the metric. Almost none of them, however, explicitly mention

in their descriptions whether constructors should be treated as

methods or whether they have to have a special status.

From a theoretical standpoint, constructors and methods

play very different roles in the life-cycle of an object [30].

This fundamental difference between them must affect class

cohesion in some way. The assumption is that excluding

constructors from formulas will make these formulas produce

more meaningful and reasonable results.

II. CONSTRUCTORS’ MISSION

Most object-oriented publications, both scientific and prac-

tical, pay a relatively small amount of attention to object

constructors in comparison to methods, attributes, types, and

other ingredients of object-oriented design. For example,

Clean Code [25] and Refactoring [16], rather popular books

about object-oriented programming, have no special sections

or even paragraphs giving an explanation of what constructors

are for and what is important in their design. The book Object-
Oriented Software Construction [26] mentions the word “con-

structor” just nine times through almost 1300 pages of text,

calling them “creation procedures of a class,” and providing

almost no additional information. The C++ Programming Lan-
guage [29] says that constructors are “member functions. . . that

define a way to initialize an object of its class,” adding no

recommendations or discussions for their design. Growing
Object-Oriented Software [18] has a single side note about

constructors, which says that “our experience is that busy

constructors enforce assumptions that one day we will want to

break, especially when testing, so we prefer to keep them very

simple—just setting the fields,” and that was the only thought

dedicated to constructors in the entire book. Object-Oriented
Analysis and Design [7] calls constructors at the same time

“member functions,” “operations,” and “metaoperations,” say-

ing that their basic responsibility is “to create an instance of

the class and populate it with a set of rules, which it then

uses for evaluation,” but does not develop the discussion in

any further direction.

Most modern object-oriented programming languages, like

Ruby, Python or PHP technically don’t differentiate con-

structors and regular object methods—they just call certain

methods by names, which are selected by convention, e.g.

initialize() in Ruby or __construct() in PHP.

Smalltalk doesn’t have constructors at all [20].

It seems that constructors, information-wise, are treated as

second class citizens; there is obviously a lack of attention

to them in academic and professional publications. In most

places, including in the formulas of cohesion metrics, which

will be demonstrated further, there is no distinction being

drawn between them and regular methods.

This doesn’t seem right, however, since the nature of

constructors is different from the nature of object methods.

First, constructors are not intended to do any work, but must

only initialize object attributes [8]. Second, they (by definition)

must “touch” all attributes in order to initialize them, or

call other constructors that do that job; some languages—like

Kotlin or Scala [28]—make this separation of primary and

secondary constructors explicit and mandatory. Third, they

always “return” the same object type [5]. Forth, they are

always present in any object, either explicitly or synthetically

67

2020 IEEE International Conference on Software Architecture Companion (ICSA-C)

978-1-7281-4659-1/20/$31.00 ©2020 IEEE
DOI 10.1109/ICSA-C50368.2020.00021

generated by the compiler. At least because of these differ-

ences, applying the same design “best practices” to them as

to regular methods seems to be a flawed idea. The empirical

analysis performed below demonstrates that this concern has

its grounds.

III. FIVE COHESION METRICS

There are over thirty different metrics existing to measure

class cohesion [22]. A few of them were selected for the

experiment:

The Normalized Hamming Distance (NHD) class cohesion

metric measures the similarity in all methods of a class in

terms of the types of their arguments [11]. Let l be the number

of distinct parameter types, k be the number of methods, and

cj be the number of methods that have a parameter of type j,

then,

NHD = 1− 2

lk(k − 1)

l∑
j=1

cj(k − cj). (1)

The Sensitive Class Cohesion Metric (SCOM) is a ratio of

the sum of connection intensities Ci,j of all pairs (i, j) of m
methods to the total number of pairs of methods. Connection

intensity must be given more weight αi,j when such a pair

involves more attributes [15]:

SCOM =
2

m(m− 1)

m−1∑
i=1

m∑
j=i+1

Ci,j × αi,j (2)

The Method-Method through Attributes Cohesion (MMAC)

metric is the average cohesion of all pairs of methods [12].

Let k be the number of methods, l be the number of distinct

parameter types, and xi be the number of methods that use

type i, then

MMAC =
1

lk(k − 1)

l∑
i=1

xi(xi − 1). (3)

The Cohesion Among Methods in Class (CAMC) measures

the extent of intersections of individual method parameter type

lists with the parameter type list of all methods in the class [3].

Let l be the number of distinct parameter types, k be the

number of methods and pi be the number of distinct parameter

types used by method i, then

CAMC =
1

lk

k∑
i=1

pi. (4)

The Lack of Cohesion of Methods (LCOM) is a correlation

between the methods and the local instance variables of a

class (we use the version suggested by [21], also known as

LCOM5). Let m be the number of methods, a be the number

of attributes and μj be the amount of methods, which use

attribute j, then

LCOM =
1

1−m

⎛
⎝1

a

a∑
j=1

μj

⎞
⎠−m. (5)

For all metrics, except LCOM, greater values mean higher

cohesion. The LCOM metric is reversed and demonstrates

smaller values for higher cohesion. In order to make the

discussion easier we use the inverted version of this metric,

which is:

LCOM = 1− LCOM . (6)

The values of all metrics are in the [0, 1] interval.

Even though it would be beneficial for this experiment to

use all or most of the available metrics, this is not technically

feasible for a number of reasons. First, the implementation

of each metric takes a certain amount of time to understand

the formula, implement the algorithm in Java, and make sure

it works as intended (at least 80 work hours). Second, some

metrics were suggested by their authors without a thorough

testing with all possible Java code samples. In other words,

they work in theory but can’t be implemented “as is” in

practice, while adapting their algorithms to the reality of Java

code may break their integrity and compromise the original

idea of their authors. The metrics used in this research are

implemented exactly as they were suggested by their authors

and they work correctly with all available Java classes.

IV. RESEARCH METHOD AND RESULTS

The most popular place for publishing open source Java

artifacts is Maven Central Repository [27]. There were 35211

artifacts found,1 which released at least one version in 2017.

Even though such a large data set constitutes a perfect analysis

corpus, it was decided to use only a subset of the entire Maven

Central Repository. The main reason behind this decision was

the amount of time and computing resources required for the

analysis of a single Java artifact: 100-500 seconds (more than

100 days for the entire Maven Central).

Artifacts with less than one hundred or more than two thou-

sand .class files were filtered out. 926 artifacts remained

in the list. This size-based selection criteria was selected

due to the following assumptions: 1) artifacts with fewer

classes may represent abnormally better design due to the

attention their developers were able to pay to each individual

class, 2) artifacts with a lot of classes may represent the

opposite situation, where developers didn’t have enough time

to pay attention to the quality of design. To exclude these

abnormalities it was decided to exclude too big and too small

artifacts and analyze only mid-sized ones.

Cohesion metrics were implemented in the scope of jPeek,

an open source Java command line utility and a web system.2

jPeek parses Java bytecode .class files via Javassist [9],

analyzes its internals with the help of ASM [6], and then

creates an XML representation of the entire artifact, where

each class is presented by an XML element.

Interfaces, annotations, enums, anonymous classes, and

classes generated by the AspectJ aspect-oriented framework

were filtered out, because none of them represent actual

1https://github.com/yegor256/scrape-maven-central
2https://github.com/yegor256/jpeek

68

objects in terms of object-oriented design. They are either

auto-generated or surrogates (like enums).

For example, take a simple Java class:

class Book {
private int id;
int getId() {

return this.id;
}

}

It would be represented by jPeek in the output XML file as

follows:

<class id='Book'>
<attributes>
<attribute public='false' static='false'

type='I'>id</attribute>↪→
</attributes>
<methods>

<method abstract='false' ctor='false' desc='()I'
name='getId' public='true' static='false'>↪→

<return>I</return>
<args/>

</method>
</methods>

</class>

Next, metric-specific XSL transformations [24] were ap-

plied to the XML file in each artifact, in order to generate mea-

surements for each metric. For example, MMAC metric pro-

duced this XML file in the org.mockito:mockito-all
artifact:

<metric>
<title>MMAC</title>
<app>

<class id='InstantiatorProvider' value='1'/>
<class id='InstantationException' value='0'/>
<class id='AnswersValidator' value='0.0583'/>
<class id='ClassNode' value='0.25'/>
[... skipped ...]

</app>
</metric>

Here, AnswersValidator and ClassNode are class

names, while 0.0583 and 0.25 are their corresponding

values of the MMAC formula, referred to below as v(c,m, a),
where c is the class, m is the metric, and a is the Java artifact.

Next, the minimum and the maximum of all v in each XML

file were found. For example, in MMAC.xml they were 0

and 1 respectively, for the Mockito artifact mentioned above.

Then, all classes, which demonstrated values equal to either

minimum or maximum, were filtered out. This was done in

order to minimize the influence of trivial classes, which most

of the Java artifacts contain. For example, most metrics would

consider this class as highly cohesive or even “perfect,” despite

its very low usefulness:

class Book {
// The body of the class is empty,
// no attributes, no methods.

}

Since most Java artifacts contain classes of a similarly trivial

kind, it was considered reasonable to filter our highest and

lowest values, to reduce noise. It was observed that some

libraries have many classes with maximum or minimum metric

values. The investigation of more than a hundred of them

showed that all of them are either 1) empty classes with no

methods and no attributes, or 2) utility classes with a large

amount of static methods and no attributes.
Then, the arithmetic mean μm,a was calculated for a set of

all N measurements v(1,m, a), v(2,m, a), . . . , v(N,m, a) as:

μm,a =
1

N

N∑
i=1

v(i,m, a). (7)

Then, the standard deviation σm,a was calculated as:

σm,a =

√√√√ 1

N

N∑
i=1

(v(i,m, a)− μm,a)2. (8)

It was observed that even though most artifacts demon-

strated rather small values of σ (within one standard deviation

of μ, or about 32%), in some of them the distribution of

values was far from normal (normality checks were performed

to test this fact). It was decided to filter out artifacts which

had σ values larger than one standard deviation, in order to

focus on artifacts where classes are designed with the highest

uniformity. 100 artifacts remained in the list.
Thus, after the described calculations, the entire list of Java

artifacts produced the matrix of μm,a, where m values are

columns and a values are rows, as shown in the Table I.

TABLE I
METRICS CALCULATED PER EACH ARTIFACT

N
H

D

S
C

O
M

M
M

A
C

C
A

M
C

L
C

O
M

io.vavr:vavr 0.31 0.59 0.47 0.55 0.31
xerces:xercesImpl 0.78 0.51 0.30 0.33 0.14
org.takes:takes 0.21 0.44 0.38 0.87 0.32
com.h2database:h2 0.75 0.73 0.18 0.44 0.17
. . .

Next, a ranking formula was introduced, in order to calcu-

late the position of each particular artifact a in the entire set.

Artifact rank ra was calculated as an arithmetic average of all

μm,a values in all M metrics:

ra =
1

M

M∑
j=1

μj,a. (9)

Thus, the entire list of artifacts was sorted by artifact ranks

ra. Each artifact got its own position pa in the list.
Then class cohesion formulas were modified, in order to

exclude constructors from calculations, and all artifacts were

ranked again and re-ordered. Ergo, two ordered lists of arti-

facts were created. The first one, where all formulas treated

constructors as regular methods; and the second one, where

constructors were excluded. The position of the artifact a in

the first list is denoted as pa, while the position of the same

artifact in the second list is p′a.
Then, the differences between pa and p′a were calculated, in

order to understand how big the effect of constructor removal

is and whether the effect has an obvious tendency:

69

da = pa − p′a. (10)

The da numbers obtained are presented in the Figure 1,

where horizontal axis is the value of da and the vertical axis

is the amount of classes in the artifact.

Fig. 1. Differences between artifact positions, with constructors and without
them

−60 −40 −20 20 40 60

500

1,000

da

classes

The distribution of numbers is visibly wide, taking into

account the amount of items in the list: one hundred. This

means that for many of them the position pa has been changed

significantly—most of the numbers da are grouped around

+50 and -50. This means that the exclusion of constructors

changed the essence of the opinions the metrics were giving

about the artifacts provided. Highly cohesive classes became

very uncohesive and vice versa.

V. CONCLUSION

First, the observed effect of constructor removal from the

formulas of the five class cohesion metrics confirms that

constructors can’t be treated similarly to regular methods.

They play a different role in object design and must find their

own place in existing formulas or some new formulas have to

be introduced.

Second, a more detailed individual analysis of the effect

constructor removal had on a few selected classes from a

few Java open source artifacts, made it obvious that a larger

number of constructors does not make a class less cohesive,

despite the opinion all analyzed metrics showed.

VI. ACKNOWLEDGEMENTS

The author is thankful to the contributors who helped design

and implement jPeek open source Java software, including, but

not limited to (in alphabetic order): Mihai Andronache, George

Aristy, Sergey Kapralov, Sergey Karazhenets, Paulo Lobo,

Vladimir Motsak, Alonso A. Ortega, Rok Povšič, Vseslav

Sekorin, Mehmet Yildirim.

REFERENCES

[1] K. K. Aggarwal, Empirical Study of Object-Oriented Metrics, Journal of
Object Technology, Volume 5, Number 8, 2006.

[2] L. Badri et al., Revisiting Class Cohesion: An empirical investigation on
several systems, Journal of Object Technology, Volume 7, Number 6, 2008.

[3] J. Bansiya et al., A class cohesion metric for object-oriented designs,
Journal of Object-Oriented Programming, Volume 11, Number 8, 1999.

[4] V. R. Basili et al., A validation of object-oriented design metrics as qual-
ity indicators, IEEE Transactions on Software Engineering, Volume 22,
Issue 10, 1996.

[5] J. Bloch, Effective Java, Addison-Wesley Professional, 3rd edition, 2018.
[6] E. Bruneton et al., ASM: a code manipulation tool to implement adaptable

systems, Adaptable and extensible component systems, 30(19), 2002.
[7] G. Booch et al., Object-Oriented Analysis and Design with Applications,

Addison-Wesley Professional, 3rd edition, 2007.
[8] Y. Bugayenko, Elegant Objects, Volume 1, Create Space, 2016.
[9] S. Chiba, Javassist—A Reflection-based Programming Wizard for Java,

Proceedings of OOPSLA’98 Workshop on Reflective Programming in C++
and Java, Volume 174, 1998.

[10] I. Chowdhury et al., Using complexity, coupling, and cohesion metrics
as early indicators of vulnerabilities, Journal of Systems Architecture,
Volume 57, Issue 3, 2011.

[11] S. Counsell et al., The interpretation and utility of three cohesion metrics
for object-oriented design, ACM Transactions on Software Engineering
and Methodology (TOSEM), Volume 15, Issue 2, 2006.

[12] J. A. Dallal, A Design-Based Cohesion Metric for Object-Oriented
Classes, International Journal of Computer and Information Engineering,
Volume 1, Number 10, 2007.

[13] J. A. Dallal, Mathematical Validation of Object-Oriented Class Cohesion
Metrics, International Journal of Computers, Issue 2, Volume 4, 2010.

[14] H. Dhama, Quantitative models of cohesion and coupling in software,
Journal of Systems and Software, Volume 29, Issue 1, 1995.

[15] L. Fernández et al., A Sensitive Metric of Class Cohesion, International
Journal “Information Theories & Applications”, Volume 13, 2006,

[16] M. Fowler, Refactoring: Improving the Design of Existing Code,
Addison-Wesley Professional, 1999.

[17] M. Fowler, Patterns of Enterprise Application Architecture, Addison-
Wesley Professional, 2002.

[18] S. Freeman et al., Growing Object-Oriented Software, Guided by Tests,
Addison-Wesley Professional, 2009.

[19] E. Gamma et al., Design Patterns: Elements of Reusable Object-Oriented
Software, Addison Wesley, 1994.

[20] A. Goldberg, Smalltalk-80: The Language and its Implementation,
Addison-Wesley, 1983.

[21] B. Henderson-Sellers et al., Coupling and cohesion (towards a valid
metrics suite for object-oriented analysis and design), Object Oriented
Systems, Volume 3, Number 3, 1996.

[22] H. Izadkhah et al., Class Cohesion Metrics for Software Engineering:
A Critical Review, Computer Science Journal of Moldova, Volume 25,
Number 1(73), 2017.

[23] H. Kabaili, Cohesion as changeability indicator in object-oriented
systems, Proceedings Fifth European Conference on Software Maintenance
and Reengineering, 2001.

[24] M. Kay, XSLT Programmer’s Reference, Wrox Press, 2000.
[25] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsman-

ship, Prentice Hall, 2008.
[26] B. Meyer, Object-Oriented Software Construction, Prentice Hall, 2nd

edition, 1997.
[27] F. P. Miller et al., Apache Maven, Alpha Press, 2010
[28] M. Odersky, The Scala Language Specification, EPFL, 2014.
[29] B. Stroustrup, The C++ Programming Language, Addison-Wesley Pro-

fessional, 4th edition, 2013.
[30] D. West, Object Thinking, Microsoft Press, 2004.
[31] E. Yourdon et al., Structured Design: Fundamentals of a Discipline of

Computer Program and Systems Design, 2nd Edition, Yourdon Press, 1978.
[32] J. M. Bieman, Cohesion and reuse in an object-oriented system, Pro-

ceedings of the 1995 Symposium on Software, 1995.

70

