The Impact of Object Immutability on Some Class
Cohesion Metrics

Yegor Bugayenko
Huawei Technologies Co., Ltd.
yegor.bugayenko@huawei.com

ABSTRACT

Class cohesion is a degree that demonstrates how tightly
class inner elements, like methods and attributes, are bound
or related to one another. Higher cohesion is a trait of good
design that leads to better maintainability. An immutable
object is an object whose state cannot be modified after it is
created. The goal of this research was to analyze whether
immutable objects are more cohesive and, because of that,
more maintainable.

1 INTRODUCTION

Class cohesion, defined by Yourdon and Constantine [28]
as a degree of how tightly bound or related its internal ele-
ments are to one another, is considered by Kabaili et al. [21]
to be one of the most important object-oriented software
attributes. A class with low cohesion has disparate and non-
related members; cohesion can be used to identify the poorly
designed classes [1, 3, 10].

An immutable object, as defined by Goetz et al. [15], is
an object whose state cannot be modified after it is created.
Immutable objects have a number of well-known advantages.
First, according to Bloch [4], they are thread-safe by defini-
tion, which means that they can be safely shared between
concurrent threads without any fear of collisions. Second, ac-
cording to Hakonen et al. [18], their usage is side-effect free,
which means that they can be passed to other methods and
functions with full confidence that they will remain intact,
no matter what will happen there. Third, according to Nayebi
[25], the “identity mutability” problem disappears when ob-
jects are immutable, which surfaces when the object’s iden-
tity is a derivative of its state. According to Bugayenko [6,
pp-74-93] and Nayebi [25], there are many other advantages.

This is a perfect example of a mutable Java class:
class Book {

private int id;

int setId(int i) {

this.id = i;

3
}

An object of this class is capable of modifying its state id
after creation:

Book book = new Book();
// Here the state is NULL

Sergey Zykov
Higher School of Economics
szykov@hse.ru

book.setId(123);
// Here the state equals to 123

To the contrary, the following class is immutable since its
state id can’t be modified after being encapsulated through
the constructor, anyhow:
class Book {

private final int id;

Book(int i) {

this.id = i;

}

3

According to Li and Henry [23], “it seems logical that the
more cohesive a class is, the easier the class is to maintain”
Highly cohesive classes, according to the very definition of
cohesiveness, are more maintainable because their design
is more focused and easier to understand. In their research,
Dallal [12] demonstrated that “classes with higher cohesion
values are more maintainable than those with lower cohesion
values” Better maintainability is an obvious objective of
any software development. Thus, high cohesiveness is what
classes in object-oriented programming must aim for.

The question is whether making classes immutable helps
them become more cohesive. An empirical analysis of a large
group of classes from open source Java artifacts was per-
formed to find an answer to this question.

2 RELATED WORK

Cohesion itself, as an indicator of object-oriented design,
was introduced by Yourdon and Constantine [28] in 1978
without specifying the exact algorithm of calculating the
metric. Since then, many different algorithms have been
suggested Izadkhah and Hooshyar [20]. Each of them pays
attention to certain parameter of a class or a combination
of them, such as the number of methods, attributes, method
arguments, attributes usage frequencies, and so on. Some
studies on existing object-oriented cohesion metrics even
found inconsistencies among some of them [16, 27].

Even though high cohesion is known as a virtue of object-
oriented design [21], very little work was done to find out
what design principles affect the cohesion. The study of Pati-
dar et al. [26] concluded that implementation inheritance
negatively affects class cohesion. The research of Guyomarc’h
and Guéhéneuc [17] attempted to identify how the usage of
AQP aspects affects cohesion. Recently published research

by Bugayenko [7] discovered the relationship between cohe-
sion and object constructors and suggested that their pres-
ence in cohesion calculating formulas makes a significant
impact on the metric. The research of Bugayenko and Zykov
[8] demonstrated the relevance betwee class size and im-
mutability.

So far, to our knowledge, no research has been attempted
to demonstrate the relationship between object immutability
and class cohesion.

3 FIVE COHESION METRICS

According to a summary published by Izadkhah and Hoosh-
yar [20], there are over thirty different metrics to measure
class cohesion. A few of them were selected for the experi-
ment:

The Normalized Hamming Distance (NHD) class cohe-
sion metric, introduced by Counsell et al. [11], measures the
similarity in all methods of a class in terms of the types of
their arguments. Let [be the number of distinct parameter
types, k be the number of methods, and c; be the number of
methods that have a parameter of type j, then,

1
2
NHD = l—m;q(k—cj). (1)

The Sensitive Class Cohesion Metric (SCOM), introduced
by Fernandez and Pefa [14], is a ratio of the summation of
connection intensities C; ; of all pairs (i, j) of m methods to
the total number of pairs of methods. Connection intensity
must be given more weight «; ; when such a pair involves
more attributes:

2 m-1 m
SCOM = m Z _Z Ci,j X & j (2)
i=1 j=i+l
The Method-Method through Attributes Cohesion (MMAC)

metric, introduced by Dallal and Briand [13], is the average
cohesion of all pairs of methods. Let k be the number of
methods, [be the number of distinct parameter types, and
x; be the number of methods that use type i, then,

]
1
MMAC = m ;xi(Xi - 1). (3)

The Cohesion Among Methods in Class (CAMC), intro-
duced by Bansiya et al. [2], measures the extent of inter-
sections of individual method parameter type lists with the
parameter type list of all methods in the class. Let [be the
number of distinct parameter types, k be the number of meth-
ods and p; be the number of distinct parameter types used
by the method i, then,

Yegor Bugayenko and Sergey Zykov

k

1
AMC = — " 4
CAMC lk;p @

The Lack of Cohesion of Methods (LCOM) is a correlation
between the methods and the local instance variables of a
class (we use the version suggested by Henderson-Sellers
et al. [19], also known as LCOMS5). Let m be the number of
methods, a be the number of attributes and ; be the amount
of methods, which use attribute j, then,

a

LCOM = L (l Z,uj) - m. (5)

1-mla

Jj=1

For all metrics, except LCOM, greater values mean higher
cohesion. The LCOM metric is reversed and demonstrates
smaller values for higher cohesion. To make the discussion
easier, we use the inverted version of this metric, which is:

LCOM =1—-LCOM. (6)

The values of all metrics are in the [0, 1] interval.

Even though it would be beneficial for this experiment to
use all or most of the available metrics, this is not technically
feasible for a number of reasons. First, the implementation of
each metric takes a certain amount of time to understand the
formula, implement the algorithm in Java, and make sure it
works as intended. Second, some metrics were suggested by
their authors without thorough testing with all possible Java
code samples. In other words, they work in theory but can’t
be implemented “as is” in practice, while adapting their algo-
rithms to the reality of Java code may break their integrity
and compromise the original idea of their authors. The met-
rics used in this research are implemented exactly as they
were suggested by their authors, and they work correctly
with all available Java classes.

4 RESEARCH METHOD AND RESULTS

The most popular place for publishing open-source Java
artifacts is the Maven Central Repository [24]. There were
35211 artifacts found,! which released at least one version in
2017. Even though such a large data set constitutes a perfect
analysis corpus, it was decided to only use a subset of the
entire Maven Central. The main reason behind this decision
was the amount of time and computing resources required
for the analysis of a single Java artifact: 100-500 seconds
(more than 100 days for the entire Maven Central).
Artifacts with less than one hundred or more than two
thousand .class files were filtered out. 926 artifacts re-
mained on the list. This size-based selection criterion was
selected due to the following assumptions: 1) artifacts with
fewer classes may represent abnormally better design due to

Ihttps://github.com/yegor256/scrape-maven-central

https://github.com/yegor256/scrape-maven-central

The Impact of Object Immutability on Some Class Cohesion Metrics

the attention their developers were able to pay to each class,
2) artifacts with a lot of classes may represent the opposite
situation, where developers didn’t have enough time to pay
attention to the quality of design. To exclude these abnormal-
ities, it was decided to exclude too big and too small artifacts
and analyze only mid-sized ones.

Cohesion metrics were implemented in the scope of an
open-source Java command line utility and a web system. It
parses Java bytecode .class files via Javassist [9], analyzes
its internals with the help of ASM [5], and then creates an
XML representation of the entire artifact, where each class
is presented by an XML element.

Interfaces, annotations, enums, anonymous classes, and
classes generated by Aspect] aspect-oriented framework
were filtered out because none of them represent actual
objects in terms of object-oriented design. They are either
auto-generated or surrogates (like enums).

For example, take a simple Java class:
class Book {

private int id;

int getId() {

return this.id;

}
}

It would be represented in the output XML file as such:

<class id='Book'>
<attributes>
<attribute public='false' static='false'
— type='I'>id</attribute>
</attributes>
<methods>
<method abstract='false' ctor='false' desc='()I'
< name='getId' public='true' static='false'>
<return>I</return>
<args/>
</method>
</methods>
</class>

Next, metric-specific XSL transformations [22] were ap-
plied to the XML file in each artifact to generate measure-
ments for each metric. For example, MMAC metric produced
this XML file in the org.mockito:mockito-all artifact:

<metric>
<title>MMAC</title>
<app>
<class id='InstantiatorProvider' value='1'/>
<class id='InstantationException' value='0Q'/>
<class id='AnswersValidator' value='0.0583'/>
<class id='ClassNode' value='0.25'/>
[... skipped ...]
</app>
</metric>

Here, AnswersValidator and ClassNode are class names,
while 0.0583 and 0. 25 are their corresponding values of the
MMAC formula.

Next, the minimum and the maximum of all values in
each XML file were found. For example, in MMAC. xm1, they
were 0 and 1 respectively for the Mockito artifact mentioned
above. Then, all classes that demonstrated values equal to
either the minimum or maximum were filtered out. This was
done to minimize the influence of trivial classes that most of
the Java artifacts contain. For example, most metrics would
consider this class to be highly cohesive or even “perfect,”
despite its lack of usefulness:
class Book {

// The body of the class is empty,

// no attributes, no methods.

}

Since most Java artifacts contain classes of a similar kind,
it was considered reasonable to filter out the highest and
lowest values to reduce noise. It was observed that some
libraries have many classes with maximum or minimum
metric values. The investigation of more than a hundred of
them showed that all of them are either 1) empty classes
with no methods and no attributes, or 2) utility classes with
a large number of static methods and no attributes.

Then, cohesiveness C; was calculated for each class i in
each artifact as an average of all five metric values.

Then, the size S; of each class i was calculated as a sum-
mary of the number of methods in the class and the number
of attributes. This is a very rough and primitive metric, but
it was required only to help visualize the entire set of classes
on a graph.

Then, all 49,854 classes found were classified into two
groups: mutable and immutable. A class was considered mu-
table if it had at least one non-final attribute. This definition
of immutability is very far from being strict, but for this
experiment, it was considered to be sufficient enough.

The visual presentation of 40704 mutable classes is in
Figure 1.

20 40 47 60 80 100
Figure 1: Mutable classes

The visual presentation of 9150 immutable classes is in
Figure 2.

It is visually obvious that immutable classes are smaller
and more cohesive. The average cohesiveness of mutable
classes is 0.31, while immutable ones demonstrate a slightly
bigger number of 0.34. The average size of mutable classes

S;

I >
t d

223 40 60 80 100
Figure 2: Immutable classes

is 67, while immutable ones have an average size of 41. As
was mentioned above, this size metric won’t make much
sense for a single class or a small group of them, but on a
bigger scale when dealing with thousands of classes, it does
make sense. The numbers confirm the initial assumption
that immutable classes are smaller and more cohesive, which
is an obvious virtue for any object-oriented software. Higher
cohesiveness and smaller size lead to higher maintainability
of software modules, lowering the amount of time and effort
a programmer must invest in them when modifications are
required.

It was observed that the cohesiveness of all classes rarely
dropped below 0.2. It was expected that they would start
from zero and go up to 1 in a more or less normal distribu-
tion. However, the probability p; of a cohesiveness C; was
distributed as Figure 3 demonstrates. It’s difficult to say why
0.2 became a lower threshold for all five metrics being used in
the analysis. This may be a good subject for further analysis.

classes .
1,500
1,000 -
500 . o
[°
J _.T.ﬁ-\..h‘ ‘ Pi
0.2 0.4 0.6 0.8 1

Figure 3: Distribution of cohesion probabilities

It is also visually obvious that the larger the class, the
lower its cohesion. Even though it was intuitively under-
standable, the empirical analysis of a large number of Java
classes proved that the size of a class negatively affects its
cohesion and maintainability. It seems to be a more complex
task to keep a class highly cohesive when its size grows.

5 DISCUSSION

Here is a practical comparison example of two Java libraries
for sending emails. The first one is commons-email (version
1.5) by Apache with a large mutable class SimpleEmail at

Yegor Bugayenko and Sergey Zykov

the core.? The second one is jcabi-email (version 1.10) with
a set of immutable classes.
Here is how Java source code may look if it sends an email
using commons-email:
Email email = new SimpleEmail();
email.setHostName("smtp.googlemail.com");
email.setSmtpPort(465);
email.setAuthenticator(new DefaultAuthenticator("user",
— "pwd"));
email.setFrom("yegor256@gmail.com", "Yegor Bugayenko");
email.addTo("friend@jcabi.com");
email.setSubject("How are you?");
email.setMsg("Hi, how are you?");
email.send();
Here is how the same email sending scenario would be
implemented with jcabi-email:
Postman postman = new Postman.Default(
new SMTP("smtp.googlemail.com", 465, "user", "pwd")
);
Envelope envelope = new Envelope.MIME(
new Array<Stamp>(
new StSender("Yegor Bugayenko <yegor256@gmail.com>"),
new StRecipient("friend@jcabi.com"),
new StSubject("How are you?")

;éw Array<tEnclosure>(
new EnPlain("Hi, how are you?")
)
);
postman.send(envelope);

In the first example, it is a monster SimpleEmail class
that can do many things, including sending MIME messages
via SMTP, creating the message, configuring its parameters,
adding MIME parts to it, and so on. There are 33 private
properties, over a hundred methods, and about two thousand
lines of code.

In the second example, there are seven objects instanti-
ated via seven new calls. Postman is responsible for pack-
aging a MIME message; SMTP is responsible for sending it
via SMTP; stamps (StSender, StRecipient, and StSubject)
are responsible for configuring the MIME message before
delivery; and enclosure EnPlain is responsible for creating a
MIME part for the message, which is going to be sent. These
seven objects are constructed, encapsulated one into another,
and then the postman is asked to send() the envelope over
the wire.

From a user perspective, there is almost nothing wrong.
SimpleEmail is a powerful class with multiple controls; just
hit the right one and the job gets done. However, from a
developer perspective, the SimpleEmail class is very difficult
to maintain, mostly because the class is very big. Multiple
getters and setters, which are the control points of the class,

Zhttp://commons.apache.org/proper/commons-email/
Shttp://www.jcabi.com

http://commons.apache.org/proper/commons-email/
http://www.jcabi.com

The Impact of Object Immutability on Some Class Cohesion Metrics

modify object attributes, configuring its behavior. When
new functionality is required, a developer has to add new
attributes to the class and a new pair of setters and getters.
Of course, such a modification decreases the cohesion of the
class since there is very little or no interconnection between
newly added attributes and previously existing ones. Every
new method added to such a big class turns into an isolated
island of functionality with its own set of attributes.

Cohesion metrics are designed to spot such isolated parts
inside classes and raise red flags. A class can’t be cohesive it
if consists of a few logical blocks without a strong intercon-
nection between them.

The immutability of a class makes it difficult to make a
class larger without spending a substantial amount of ef-
fort on refactoring. If the SimpleEmail class was immutable
in the beginning, it wouldn’t be possible to add so many
methods into it and encapsulate so many properties because
an immutable object only accepts a state through its con-
structors. It’s difficult to imagine a 33-argument constructor.
When a class is immutable from the start, its developers are
forced to keep it cohesive and small because they can’t en-
capsulate too much or modify what’s encapsulated. Just two
or three arguments of a constructor and the reasonable limit
is reached; everything on top of that will look strange and
clumsy.

The immutable design of jcabi-email implements the
exact same email sending functionality, but employs seven
classes for that, instead of one. Of course, the cohesiveness of
each of them is much higher than the one of SimpleEmail.
The length of each of them is below 300 lines of code, which
by itself is a perfect indicator of high readability and main-
tainability.

Moreover, to extend the functionality of the library, ex-
isting classes don’t need to be modified. Each new feature
must be added through the creation of new classes and im-
plementing existing interfaces.

6 CONCLUSION

It was demonstrated by the empirical analysis of almost a
thousand Java open source libraries and 40 thousand Java
classes that immutable classes are smaller and more cohesive,
which makes them more maintainable. Hence, it is advised
to make classes immutable to increase the overall quality of
the software.

Many thanks to the contributors who helped design and
implement jPeek open-source Java software, including, but
not limited to (in alphabetic order): Mihai Andronache, George
Aristy, Sergey Kapralov, Sergey Karazhenets, Paulo Lobo,
Vladimir Motsak, Alonso A. Ortega, Rok Povsic¢, Vseslav
Sekorin, and Mehmet Yildirim.

REFERENCES

[1] LindaBadri, Mourad Badri, and Alioune Badara Gueye. 2008. Revisiting
Class Cohesion: An empirical investigation on several systems. Journal
of Object Technology 7, 6 (2008), 55-75.

[2] Jagdish Bansiya, Letha Etzkorn, Carl G. Davis, and Wei Li. 1999. A

Class Cohesion Metric For Object-Oriented Designs. Journal of Object-

Oriented Programming 11, 8 (01 1999), 47-52.

V. R. Basili, L. C. Briand, and W. L. Melo. 1996. A validation of object-

oriented design metrics as quality indicators. IEEE Transactions on

Software Engineering 22, 10 (1996), 751-761.

[4] Joshua Bloch. 2006. How to Design a Good API and Why It Matters.

In Companion to the 21st ACM SIGPLAN Symposium on Object-oriented

Programming Systems, Languages, and Applications (OOPSLA’06). ACM,

New York, NY, USA, 506-507.

Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: A

code manipulation tool to implement adaptable systems. In In Adapt-

able and extensible component systems.

[6] Yegor Bugayenko. 2016. Elegant Objects. Vol. 1. Amazon.

[7] Yegor Bugayenko. 2020. The Impact of Constructors on the Validity of
Class Cohesion Metrics. In IEEE International Conference on Software
Architecture. San Paulo, Brazil.

[8] Yegor Bugayenko and Sergey Zykov. 2020. The Impact of Object

Immutability on the Java Class Size. In 24th International Conference on

Knowledge-Based and Intelligent Information & Engineering Systems.

Shigeru Chiba. 1998. Javassist—a reflection-based programming wizard

for Java. In Proceedings of OOPSLA’98 Workshop on Reflective Program-

ming in C++ and Java, Vol. 174. Citeseer, 21.

[10] Istehad Chowdhury and Mohammad Zulkernine. 2011. Using complex-
ity, coupling, and cohesion metrics as early indicators of vulnerabilities.
Journal of Systems Architecture 57, 3 (2011), 294-313.

[11] Steve Counsell, Stephen Swift, and Jason Crampton. 2006. The Inter-
pretation and Utility of Three Cohesion Metrics for Object-oriented
Design. ACM Transactions on Software Engineering Methodologies 15,
2 (2006), 123-149.

[12] Jehad Al Dallal. 2013. Object-oriented class maintainability prediction
using internal quality attributes. Information and Software Technology
55, 11 (2013), 2028-2048.

[13] Jehad Al Dallal and Lionel C. Briand. 2010. An object-oriented high-
level design-based class cohesion metric. Information and Software
Technology 52, 12 (2010), 1346-1361.

[14] Luis Fernandez and Rosalia Pefa. 2006. A Sensitive Metric of Class
Cohesion. Information Theories and Applications 13 (2006).

[15] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, Doug Lea, and
David Holmes. 2005. Java Concurrency in Practice. Addison-Wesley
Professional.

[16] Bindu S Gupta. 1997. A critique of cohesion measures in the object-
oriented paradigm. Master’s thesis. Citeseer.

[17] Jean-Yves Guyomarc’h and Y Guéhéneuc. 2005. On the impact of
aspect-oriented programming on object-oriented metrics. In Proceed-
ings of the 9th ECOOP Workshop on Quantitative Approaches to Object-
Oriented Software Engineering (QAOOSE 2005), Glasgow, UK.

[18] Harri Hakonen, Ville Leppanen, Timo Raita, Tapio Salakoski, and Jukka
Teuhola. 1999. Improving object integrity and preventing side effects
via deeply immutable references. In In Proceedings of sixth Fenno-Ugric
Symposium on Software Technology, FUSST’99.

[19] Brian Henderson-Sellers, Larry L. Constantine, and lan M. Graham.
1996. Coupling and cohesion (towards a valid metrics suite for object-
oriented analysis and design). Object Oriented Systems 3 (1996), 143
158.

[20] Habib Izadkhah and Maryam Hooshyar. 2017. Class Cohesion Metrics
for Software Engineering: A Critical Review. The Computer Science

3

—

5

—

[o

—

Yegor Bugayenko and Sergey Zykov

Journal of Moldova 25 (2017), 44-74.

[21] H.Kabaili, R. K. Keller, and F. Lustman. 2001. Cohesion as changeability
indicator in object-oriented systems. In Proceedings Fifth European
Conference on Software Maintenance and Reengineering. 39-46.

[22] Michael Kay. 2008. XSLT 2.0 and XPath 2.0 Programmer’s Reference
(Programmer to Programmer) (4 ed.). Wrox Press Ltd., Birmingham,
UK, UK.

[23] Wei Li and Sallie Henry. 1993. Object-oriented metrics that predict

maintainability. Journal of systems and software 23, 2 (1993), 111-122.

Frederic P. Miller, Agnes F. Vandome, and John McBrewster. 2010.

Apache Maven. Alpha Press.

[25] Fatih Nayebi. 2017. Swift Functional Programming. Packt Publishing
Ltd.

[26] Kailash Patidar, R Gupta, and Gajendra Singh Chandel. 2013. Coupling

and cohesion measures in object oriented programming. International

Journal of Advanced Research in Computer Science and Software Engi-

neering 3, 3 (2013).

Ahmed M Salem and Abrar A Qureshi. 2011. Analysis of inconsisten-

cies in object oriented metrics. Journal of Software Engineering and

Applications 4, 02 (2011), 123.

Edward Yourdon and Larry L. Constantine. 1979. Structured Design:

Fundamentals of a Discipline of Computer Program and Systems Design

(1st ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

(24

[l

[27

—

[28

—

	Abstract
	1 Introduction
	2 Related Work
	3 Five Cohesion Metrics
	4 Research Method and Results
	5 Discussion
	6 Conclusion
	References

