
10 COMMUNICATIONS OF THE ACM | NOVEMBER 2019 | VOL. 62 | NO. 11

Follow us on Twitter at http://twitter.com/blogCACM

The Communications Web site, http://cacm.acm.org,
features more than a dozen bloggers in the BLOG@CACM
community. In each issue of Communications, we’ll publish
selected posts or excerpts.

Clients want to keep costs low, and
if they can, they will pass costs onto out-
side companies. That’s why we decided
to “get lazy” and only do what we are
paid to do. We won’t go out of our way
to improve a project, refactor, or fix code
unless we are getting paid for it.

And when we find ourselves with a
task in front of us and we don’t under-
stand how to solve it, we usually don’t
blame ourselves. This is especially true
if the problem has something to do
with legacy code. See, here’s the thing:
we weren’t paid to understand the leg-
acy code. We were paid to add a feature,
solve a bug, or whatever.

Suddenly becoming experts in a
project’s legacy code would be outside
the scope of our work, and since we’re
lazy, we’re not going to venture outside
of our assignment unless we’re paid to
do so. A project shouldn’t expect you to
be intelligent or tech-savvy, as far as the
legacy code is concerned. Instead, you
need to focus on closing tickets.

It’s not your fault if the code is a
complete mess, or the bug is serious,
or you can’t estimate how much time it
will take to understand the legacy code,
let alone how to fix the bug. So whose
fault is it? The first guilty party is the

code itself. And the clients overseeing
the code are also at fault.

Once you accept that, you can put
together a basic report by creating
new tickets. This report could be
lazy-simple:

 ˲ There is no documentation for
Class Y, can’t figure out how it works.

 ˲ Library Z is in use but why aren’t
you using library B?

 ˲ This algorithm is a complex mess,
can you explain what it does?

 ˲ The class naming rules are incoher-
ent, can you provide documentation?

Suddenly, your initial “report” is in-
stead a list of questions. You can’t provide
the answers because you don’t honestly
know them and you are too lazy to figure
it out. Answering these questions falls
outside of the scope of work you were
hired for, so it is reasonable to expect
the client to provide documentation.

Now, you might have noticed a com-
mon thread in the questions here. I
didn’t ask for help. I didn’t ask some-
one to create something for me. Pro-
grammers will often reach out for help,
saying something like “which library
should I use for this task?”

Here’s the thing: your clients aren’t
hiring you so they can do your work for

Yegor Bugayenko
Lazy Developers Are
the Best Developers
http://bit.ly/2lEC9KE
July 15, 2019
We are taught from a

young age that the hardest workers en-
joy the most success. Hard work pays
off, or so we are told. But “hard work”
can be a bit problematic for software
developers, because it often means go-
ing well above and beyond the original
scope of the project.

This is especially true when it comes
to understanding legacy code. When
you deal with legacy code, you often find
yourself having to engage in so-called
“deep thinking.” You are expected to un-
derstand large problem scopes before
you even begin trying to fix the small
bugs. For a long time, this stressed me
out. Then I got an idea: be lazy.

At my company, Zerocracy, we prac-
tice a #NoAltruism policy. We, quite lit-
erally, think only about ourselves and
our personal profit. This might sound
a bit harsh. Isn’t it better to play nice
and try to appease your clients? In an
ideal world, maybe. But here’s what we
have learned about clients: they also
practice #NoAltruism.

The Benefits
of Indolence
Yegor Bugayenko explains his realization that
software developers should go neither above nor beyond.

DOI:10.1145/3360907 http://cacm.acm.org/blogs/blog-cacm

http://dx.doi.org/10.1145/3360907

NOVEMBER 2019 | VOL. 62 | NO. 11 | COMMUNICATIONS OF THE ACM 11

blog@cacm

you. They aren’t hiring you so they can
be your teacher, either. They don’t real-
ly want to explain anything to you. For
them, it’s money and time they would
rather not spend.

So your goal, then, is to get your cli-
ents to fix the code base so that the code
itself becomes more obvious and easier
to read. This will help not only you, but
everyone else. As such, focus on asking
for documentation and code source fixes.

Okay, so you’ve got the tickets out
and you’ve asked the client to fix their
source code and address other prob-
lems. So what now? Sit back and relax!
You wait for the tickets to be resolved
and don’t sweat who is resolving the is-
sues; that’s not really our business.

Now, your employer may decide to
kick the problem back to you, asking
you to solve it on your own. That’s fine,
so long as you’re getting paid for it and
the employer expands the scope of your
work. Instead of fixing bugs, you’re
now documenting some functionality
or refactoring this and that.

As you create tickets and blame every-
one else around you, you will continue to
create smaller and smaller scopes. Even-
tually, you may find that the tickets can
be fixed in a half hour or less. And keep
in mind, when I say “blaming everyone
else,” that doesn’t mean shouting at oth-
er people. It simply means not beating
yourself up for problems you didn’t cre-
ate, and shifting responsibility for poor-
ly written code to the original source.

Being lazy can take a lot of effort
(seriously). We are programmed not
to be lazy. Some people will resist the
call. They might feel ashamed (stop
it!). They want to be perfectionists (only
perfect what you’re paid to!). Or maybe
you lack the passion needed to be lazy
(get a new job!).

Comments
This is unacceptable practice from
ACM’s professional ethics guidelines.
Zerocracy promotes no altruism and
no help. This practice violates the core
mission of ACM as an organization, which
is “Contribute to society and to human
well-being, acknowledging that all people
are stakeholders in computing.” I request
ACM to retract this article. Computing
professionals have the obligation to
behave in an altruistic manner and help
each other for both advancement of
business productivity, human well-being,

and advancement of computing systems.
Zerocracy is a disgraceful movement for
computing profession.

—Mehmet Suzen

Mehmet, can you please elaborate on how
exactly “contribute to society” leads to the
conclusion that we are obliged to behave in
an altruistic manner?

—Yegor Bugayenko

I think this policy is created to end the
abuse on the client’s behalf. #NoAltruism
does not mean that in Zerocracy people
would create software to support terrorism.
Engineering is not altruistic, is precise. The
Zerocracy policies are meant to create an
efficient culture, not people without values.
I think Mehmet misunderstood what
#NoAltruism means.

—Eduardo Portal Geroy

“Computing professionals have the
obligation to behave in altruistic manner
and help each other for both advancement
of business productivity, human well-being,
and advancement of computing systems.”
As much as they have an obligation to not
waste their time for free, increasing the
engineering level in the company, helping
others do their job, and saving time to help
others and contribute to society in their free
time, doing really altruistic things, not what
you are talking about.

—Nikita Puzankov

“Computing professionals have the
obligation to behave in an altruistic manner
and help each other.”

There’s a difference between purposeful
altruism as a means to improve the system,
and blind altruism as a fanatic ideology.
The thing we need to keep in mind is, the
human psychology is never without its flaws,
no matter how hardcore a saint you would
be trying to play here. I myself have seen
numerous examples of a biased altruist
doing much more harm than a selfish but
rational person in a similar situation.

Zerocracy is about regulating those
psychological flaws, not trying to abolish
them, which would most certainly end in
(yet another) wasted effort. Being truthful
with oneself, first and foremost, is the
key in building all sorts of constructive
professional relationships. Ignorance of
that is bound to amplify guilt and fear in
performers many times in the end, which
might be appealing to certain moral
fundamentalists who believe a scared
programmer’s guilt complex is like some
sort of a virtue. The truth is, it just doesn’t
work out like that.

—Ilyas Gasanov

This occurs whether one is a consultant
or contractor, or a salaried employee
of the organization that owns the software.
I have been both.

Even within the organization that owns
the software, the deep thinking required
to document otherwise undocumented
systems or to fix underlying design problems
is discouraged, and the attitude of “fix the
immediate problem” prevails. This causes
the organization’s maintenance costs to
increase steadily over time as technical debt
piles up unaddressed, deeper and deeper.

This works similarly to the principle
of conservation of energy, which pops up
in infinitely varied guises whenever one
attempts to create a perpetual motion
machine: it is always thus regardless of
which trendy or modern “methodology”
is used in an attempt to manage the
problem solved without doing the actual,
necessary work.

In the end, one is doing one’s client
or one’s employer a disservice by not
warning them that a failure to solve the
deeper problems will cost far more in the
long run than any immediate savings they
will realize by ignoring those problems for
the present.

—Robert Watkins

Yegor Bugayenko is founder and CEO of software
engineering and management platform Zerocracy.

© 2019 ACM 0001-0782/19/11 $15.00

“It’s not your fault
if the code is
a complete mess,
or the bug is serious,
or you can’t estimate
how much time
it will take to
understand the
legacy code, let alone
how to fix the bug.”

