
10 COMMUNICATIONS OF THE ACM | SEPTEMBER 2019 | VOL. 62 | NO. 9

Follow us on Twitter at http://twitter.com/blogCACM

The Communications Web site, http://cacm.acm.org,
features more than a dozen bloggers in the BLOG@CACM
community. In each issue of Communications, we’ll publish
selected posts or excerpts.

implement some other huge changes,
often simply for the sake of doing so.
Let’s take a closer look at what I mean.

Let’s say a new developer joins the
team. At first, he checks all the boxes.
He knows his code, he’s got energy, he’s
easy to communicate with, and he’s
putting in time, submitting new tickets
and offering useful suggestions. Dur-
ing those first few days, he seems like a
gift from the heavens.

As he learns more about the project,
the hazardous enthusiasm starts to
creep in. Instead of tickets with help-
ful suggestions, he hits me up on Tele-
gram with a bold claim: the architec-
ture is a complete and utter mess, and
I’ve got just a matter of weeks before
the project will implode.

I counter with a polite reassurance
that I understand, but before even
hearing me out, he’s already suggest-

ing that we re-do everything from
scratch. At the very least, he suggests
we trash a collection of objects, and
replace them with a singleton and
a particular ORM library. Of course,
he’s been using these for months, and
they’re amazing and as soon as I see
everything in action I’m going to be
floored and, and, and …

Now at this stage, there’s a lot I will
probably want to say. I could remind
him that I am an architect myself, and
that I have a long string of successes un-
der my belt. I might point out that we’ve
been working on this project for some
time and that so far development is pro-
gressing at a comfortable pace.

Often, however, I say very little
and instead ask him to submit a tick-
et. I offer an assurance: I’ll review
his suggestions as soon as possible.
And I casually remind him that I am
an architect, and in fact the architect
for this project. In an ideal world,
he’d accept that and follow up some
incremental changes. More often,
he claims that he’ll show me how it’s
supposed to be done.

A few days later, he hits me up with
a huge pull request. There are tons
of changes, and some of them actu-
ally look quite interesting. The prob-
lem is, a lot of the suggestions are all
but antithetical to the principles I’ve
embedded into the existing architec-
ture. I know he’s put a lot of time into
his project, but I have to reject the
pull request anyway.

Can you guess what happens next?
The developer, once a godsend, sim-
ply ups and disappears. You see, I’m

Yegor Bugayenko
Hazardous Enthusiasm
and How Eagerness
Can Kill A Project
http://bit.ly/2LHzuLq
June 27, 2019

Programmers are constantly contribut-
ing to my open source projects (all of
my projects are open source, FYI). Some
are volunteering their time, others are
paid through Zerocracy. While I have
worked with a lot of great developers
over the years, I have also come across
a number of people afflicted with what
I call “hazardous enthusiasm.”

These people have energy and of-
ten the skills, but are overzealous and
don’t know how to break down their
changes and deliver them incremental-
ly. People afflicted with hazardous en-
thusiasm frequently want to tear down
and rebuild the entire architecture or

Why Programmers
Should Curb
Their Enthusiasm,
and Thinking about
Computational Thinking
Yegor Bugayenko ponders the dangers of “hazardous enthusiasm,”
while Mark Guzdial considers whether the need to teach
computational thinking can be “designed away.”

DOI:10.1145/3344262 http://cacm.acm.org/blogs/blog-cacm

http://dx.doi.org/10.1145/3344262

SEPTEMBER 2019 | VOL. 62 | NO. 9 | COMMUNICATIONS OF THE ACM 11

blog@cacm

the bad guy here. I am evil and anti-
innovation and closed-minded. How
dare I not scrap an entire project and
start over!? I’ve been through all of
the above time and time again.

The sad thing is, that developer
probably could have made a lot of
useful contributions. Sometimes
we come across incompetent devel-
opers, but a lot of times they’re ac-
tually great from the technical per-
spective; what they’re lacking is an
ability to microtask.

Developers jumping onto new
projects need to know how to break
down changes into small, digestible
chunks and then deliver them incre-
mentally. Instead of pushing out one
huge chunk of changes or trying to
completely upend the entire project,
they need to set their sights lower. As
an experienced and successful archi-
tect, I’m not going to allow someone
to completely implode a project in
their first week.

Maybe I’m evil. More likely, the de-
veloper has been struck with a case of
fatal enthusiasm. Although they want
to do the right thing, they are way too
eager and overly zealous. Every fix has
to be implemented in one pull request
and there’s no time to wait. Any incre-
mental improvements simply won’t
be acceptable. Remember, in their
view, time is running out and the proj-
ect is only weeks from failing anyway.

So why don’t I just step aside and let
them fix the code the way they want?
Maybe they’re simply a better architect
then me. But here’s the thing: being a
successful architect requires micro-
tasking. As an architect, you have to
manage changes, and you have to im-
plement them gradually. This is a basic
necessity in a dynamic, collaborative
work environment.

The moment a developer comes to
me and tries to upend the entire proj-
ect just a few days in, I already know
they are going to struggle with incre-
mental change. That means they’re go-
ing to struggle in the architect’s seat,
so I can’t exactly hand over the keys to
the whole venture.

So no, you are not being evil or
closed-minded when you reject haz-
ardous enthusiasm. You are being
prudent, wise, or whatever you want
to call it. Most importantly, you’re be-
ing a good architect.

Mark Guzdial
A Design Perspective
on Computational
Thinking
http://bit.ly/2JkL3q2
June 9, 2019

Computational thinking was popular-
ized in a March 2006 column in Commu-
nications by Jeannette Wing. In 2010, she
published a more concise definition (see
her article about the evolution of these
definitions at http://bit.ly/2Xwr1Nr):

Computational thinking is the thought
processes involved in formulating prob-
lems and their solutions so that the solu-
tions are represented in a form that can
be effectively carried out by an informa-
tion-processing agent (Cuny, Snyder, and
Wing, 2010).

I have been thinking a lot about
this definition (see the BLOG@CACM
from last September at http://bit.ly/
2S437aS, and my April blog at http://bit.
ly/2YBljuV). This is a definition most
people can agree with. The problem is
when you use it to define curriculum.
What does it mean to represent a prob-
lem in a form that can be effectively
solved by a computer? What do we teach
to give students that ability?

Computers are designed. The prob-
lem form changes. We can make com-
puters easier to use.

Human-computer interface designers
and programming language designers
are all about making it easier to repre-
sent problems in a computable form. A
good user interface hides the complexity
of computation. Building a spreadsheet
is much easier than doing the same cal-
culations by hand or writing a program.

I have been digging deeper into the
literature on designing domain-specific
programming languages. The empiri-
cal research is pretty strong. Domain-
specific programming languages lead
to greater accuracy and efficiency than
use of general-purpose languages on the
same tasks (as an example, see http://bit.
ly/2NHhFPh). We are learning to make
programming languages that are easy
to learn and use. Sarah Chasins and
colleagues created a language for a spe-
cific task (Web scraping) that users could
learn and use faster than existing users of
Selenium could solve the same task (see
the blog post at http://bit.ly/2XPd9Sx).

So, what should we teach in a class on
computational thinking, to enable stu-
dents to represent problems in a form

that the computer can use? What are the
skills and knowledge they will need?

 ˲ Maybe iteration? Bootstrap: Alge-
bra (http://bit.ly/2YMinvK) showed that
students can learn to build video games
and learn algebraic problem-solving,
without ever having to code repetition
into their programs.

 ˲ Booleans? Most students us-
ing Scratch don’t use “and,” “or,” or
“not” at all (see the paper at http://bit.
ly/2L8ORwL). Millions of students solve
problems on a computer that they find
personally motivating, and they do not
seem to need Booleans.

Our empirical evidence suggests even
expert programmers really learn to pro-
gram within a given domain. When ex-
pert programmers switch domains, they
do no better than a novice (see the post at
xhttp://bit.ly/2NEZidz). Expertise in pro-
gramming is domain-specific. We can
teach students to represent problems
in a form the computer could solve in a
single domain, but to teach them how to
solve in multiple domains is a big-time
investment. Our evidence suggests stu-
dents graduating with a four-year under-
graduate degree don’t have that ability.

Solving problems with a computer
requires skills and knowledge different
from solving them without a computer.
That’s computational thinking. We will
never make the computer completely
disappear. The interface between hu-
mans and computers will always have
a mismatch, and the human will likely
have to adapt to the computer to cover
that mismatch. But the gap is getting
smaller all the time. In the end, maybe
there’s not really that much to teach
under this definition of computational
thinking. Maybe we can just design away
the need for computational thinking.

Comments:
I wonder how well Khan Academy’s approach
to teaching computational thinking works,
since it seems to be more interactive and
can be connected to other skills (if there are
courses for them): https://www.khanacademy.
org/computing

—Rudolf Olah

Yegor Bugayenko is founder and CEO of software
engineering and management platform Zerocracy. Mark
Guzdial is a professor of electrical engineering and
computer science, and engineering education research, in
the College of Engineering, and professor of information in
the School of Information of the University of Michigan.

© 2019 ACM 0001-0782/19/9 $15.00

