
12 COMMUNICATIONS OF THE ACM | SEPTEMBER 2018 | VOL. 61 | NO. 9

Follow us on Twitter at http://twitter.com/blogCACM

The Communications Web site, http://cacm.acm.org,
features more than a dozen bloggers in the BLOG@CACM
community. In each issue of Communications, we’ll publish
selected posts or excerpts.

However, most testers feel like
they’re helping ensure the product’s
success when, in fact, they’re miss-
ing that component altogether. Myers
notes this misguided focus, stating,
“You cannot test a program to guar-
antee that it is error-free.” Software
by its nature has an unlimited num-
ber of bugs. Boris Beizer said in Soft-
ware Testing Techniques (1995, https://
amzn.to/2N1yOhg): “The probability
of showing that the software works de-
creases as testing increases; that is,
the more you test, the likelier you are
to find a bug. Therefore, if your objec-
tive is to demonstrate a high probabil-
ity of working, that objective is best
achieved by not testing at all!” Most
testers fail to understand this. They
tend to see it as a neatly packaged
product that only needs a bit of polish-
ing to run smooth.

The real number can be limitless.
No matter how big or small, simple or
complex, old or new a product is, the
potential for bugs is astronomical.
Myers underscores this, arguing that
“it is impractical, often impossible,
to find all the errors in a program.”
Even with limitless time and funding,
testers cannot find all the bugs. Bill

Hetzel in his book The Complete Guide
to Software Testing (1993, https://
amzn.to/2m6f5BM) wrote, “We can-
not achieve 100% confidence no mat-
ter how much time and energy we put
into it!” William E. Lewis in his book
Software Testing and Continuous Qual-
ity Improvement (2009, https://amzn.
to/2KUUsXg) even calls this a “testing
paradox,” which has “two underlying
and contradictory objectives: to give
confidence that the product is work-
ing well and to uncover errors in the
software product before its delivery to
the customer.” If this is the case, then
what do you do?

There has to be a certain point
where testers stop looking for bugs.
Meyers points out that “one of the
most difficult questions to answer
when testing a program is determin-
ing when to stop, since there is no way
of knowing if the error just detected
is the last remaining error.” Finding
bugs motivates testers, and they’ll
keep looking for them. At some point,
you have to launch the product. But
what happens, though, if you launch a
product before you find all the bugs?
If you do that, then won’t you launch
it with bugs? Yes!

Yegor Bugayenko
The Era of Hackers
Is Over
http://bit.ly/2LfUci6
May 30, 2018
You gather up your team of

testers. You throw them some money. You
give them a schedule. And then you sit
back and watch them go, tearing through
your product trying to break it. They find
bugs, report them, find more bugs, report
those too. Soon enough, they’ll leave you
with the perfect product ready to ship
without any worries and total customer
satisfaction. Right? Wrong.

In The Art of Software Testing (2011,
https://amzn.to/2J7UFRE), Glenford
Myers explains that “testing is the pro-
cess of executing a program with the
intent of finding errors.” Testing fails
because the intentions behind the task
are very often misplaced. Finding er-
rors is not the same strategy as making
sure a product works. Instead of focus-
ing on whether the product functions
under parameters, the main focus of a
testing team must center on discover-
ing bugs. This “destructive, even sadis-
tic, process,” as Myers calls it, focuses
on breaking the product, looking for
various inputs to crash under stress.

Discovering Bugs,
or Ensuring Success?
Finding errors is not the same as making certain
a software product works correctly.

DOI:10.1145/3237196 http://cacm.acm.org/blogs/blog-cacm

http://dx.doi.org/10.1145/3237196

SEPTEMBER 2018 | VOL. 61 | NO. 9 | COMMUNICATIONS OF THE ACM 13

blog@cacm

Despite all that work, all that mon-
ey, all that effort, you still launched a
program riddled with bugs. It seems
rather pointless. Your product is out
there flawed. Filled with bugs. But
you have to ask yourself, How many
critical bugs remain? You could have
provided your team more time to com-
plete the impossible task of finding all
the bugs, but would they have found
more critical bugs?

It is better to launch a product that
you have confidence in than waste
time and resources trying to make it
perfect. Quality control will always
find itself pressed hard against the
deadline, but there are solutions you
can take to make sure testing ben-
efits the product. Instead of allowing
testers endless time to find errors
as they tear apart the programming,
give your testers a goal. Meyers notes
that “since the goal of testing is to
find errors, why not make the comple-
tion criterion the detection of some
predefined number of errors?” This
enforces the need to find bugs, but
limits the total amount and draws fo-
cus toward critical bugs rather than
general ones.

Once testers pass that marker, you
then have clear confidence the prod-
uct will successfully launch. “Soft-
ware is released for use, not when it
is known to be correct,” David West
points out in Object Thinking (2004,
https://amzn.to/2J6jyNT), “but
when the rate of discovering errors
slows down to one that management
considers acceptable.” At some
point, there needs to be a line, a lim-
it, a goal. If your testers lack a goal,
then they end up wasting time and
money finding bugs that most like-
ly don’t improve the overall quality
of the product. Steve McConnell in
the Software Project Survival Guide
(1998, https://amzn.to/2u3Womi)
even suggests that “by comparing
the number of new defects to the
number of defects resolved each
week, you can determine how close
the project is to completion.”

By setting a definite limit for the
testers, you guide their targeted ap-
proach to product testing with a pre-
determined goal. This goal helps tes-
ters rid the program of enough bugs
for it to run smoothly after launch. If
you don’t do that, you could end up

spending unnecessary time and mon-
ey finding and removing bugs that
may not even be a problem. I briefly
described this concept in my blog
post “When Do You Stop Testing?”
(2015, http://bit.ly/2zphq46).

Comments
Testing is good after the fact and needed,
but is there an option for coding better in the
first place? Are there design-by-contract
libraries or lightweight proof tools that can
prevent bugs from getting into the code in
the first place?

It seems to me there’s a heavy reliance
in industry on QA teams and developers
begrudgingly have moved to writing unit
and integration tests (and in some cases
avoid writing any tests at all, ditto for
documentation of any sort).

Essentially, is there a way to frontload
the costs of testing into the design and
development so that we can start closer to
the ideal error discover rate?

—Rudolf Olah

Testing is essential but not sufficient. Best
software is developed/delivered/enhanced
with the right set of developers, and not
really testers.

Many times developers may not test
from end-users’ perspectives (not just
ensuring correctness of functionality) or
might not have developed the product with
production-first mindset. This is where
a tester can add a great value. I think
this blog is more from this independent
(blackbox) testing perspective.

Earlier, each developer (a very
good programmer) was expected to
spend ~20% time in design (includes
understanding requirements) and 60%
in coding. Rest should be reserved for
debug (~10%) and testing (~10%). When
introducing innovations/differentiation

(and new architecture), you may follow
different cycle. The same ratio cannot be
extended to a team of developers who are
developing a product. What kind of testing
they will do? Unit or the integrations I
do? Who does end-to-end testing? Also, in
such cases developers spend some time
in collaboration, integrations, etc. This is
where independent testing, testing as a
discipline, started.

In today’s world, systems are more
complex, highly competitive, evolve
continuously, and need integrations
that challenge a developer’s proficiency
beyond his or her core skills. Everyone
wants to develop and release a new
version of their software product/
application in a shorter span, but there
are very few skills around to deliver
the quality and differentiated extended
product considering all dimensions, like a
product’s current status, expected usage,
state of integration, and deployment.

Methodologies like Design by
Contract, OO, etc., do help and are
followed. But again, it is the right set of
developers and right technical leader
who balance and develop a great
product. Beyond that, there are market
pressures and resource limitations.

One of the alternatives is to use
packaged products that one configures
to deliver required quality in a limited
time. Unfortunately, packaged products
themselves are becoming mammoth. Check
a few of the CRM products around, and you
will find testing periodic configurations of
these products is a big business.

Another alternative is to add extra cycles
of testing before and as part of the release of
your product ... which is where you get a more
independent view of the quality and usability
of a product. Sometimes such testers work as
part of DevBox testing leading to Test Early,
Test Often, and Test Continuously.

Well, ... but this also requires good
testers. I feel that is exactly what this blog
and references highlight.

So, in summary, you need to balance
design, development, and testing as per
the product complexity, requirements size/
complexity, domain, individual skills ... and
also compliance expectations.

All the best.
—Vivek Buzruk

Yegor Bugayenko is founder and CEO of software
engineering and management platform Zerocracy.

© 2018 ACM 0001-0782/18/9 $15.00

By setting a definite
limit for the testers,
you guide their
targeted approach
to product testing with
a predetermined goal.

