
June 2010 30 www.phparch.com

Integration
Testing with

REQUIREMENTS

PHP: 5.2+

Other Software:
• phpRack 0.1
• Phing 2.4.2

Related URLs:
• phpRack homepage: http://www.phprack.com
• Phing: http://www.phing.info
• PHPUnit: http://www.phpunit.de

by Yegor Bugayenko

Unit tests plus continuous integration give you a guarantee that most
of your source code defects will be caught before they reach end users.
Unit tests verify the code beforehand and a continuous integration
server informs you if a defect is found, prior to deployment. It’s a
proven mechanism used by many teams striving for quality, but who
can guarantee that if a defect is found after deployment, it is reported
immediately before disappointed end users find it? Integration tests can
achieve this.

Framework
phpRack

FEATURE

Li
ce

ns
ed

 to
 4

66
25

 -
 Y

eg
or

 B
ug

ay
en

ko
 (

eg
or

@
te

ch
no

pa
rk

co
rp

.c
om

)

http://www.phprack.com
http://www.phing.info
http://www.phpunit.de

June 2010 31 www.phparch.com

Integration Testing with phpRack Framework

What is Integration Testing?
In short, “Integration Testing” is similar to unit
testing, however, the testing subject is not the soft-
ware itself, but its deployment environment. With
integration tests, you’re verifying whether your prod-
uct is correctly installed and is ready for end users.
This article explains the concept and its imple-
mentation in phpRack, the open-source framework.
phpRack is written in PHP, but can be used for the
integration testing of products written in any other
web-oriented language, including Java, Python, and
Ruby.

Let’s start with a simple example. Imagine you
have developed a web application and prepared it
for delivery to your customer. You created com-
plete and detailed installation instructions where

you explained the requirements for the server-side
system software configuration. Despite your efforts,
very soon you receive a complaint from the custom-
er: “The system is full of bugs, and we can’t make
it work!” Yet you know for sure that the product is
properly tested and works on your local machine.
You understand that the problem is in the installa-
tion, within the customer’s server environment. How
do you explain to the customer where the problem is
and how to fix it?

One option is to do the work yourself. Ask the cus-
tomer for root access to the server, debug the soft-
ware there, find the problems, fix them, and make
the customer happy. This solution is very common,
but is also a very costly and risky method. Firstly,
you don’t know how much time this procedure might
take. Secondly, you might unintentionally break
other products on the same server. Thirdly, you will
become responsible for the server and this installa-
tion forever. The list of potential problems is end-
less. The bottom line is that this manual approach,
although very common, is the worst option.

Integration tests are a great alternative. You cre-
ate small supplementary software modules that are
executed on the production server and validate criti-
cal environmental details. Such details might include
the version of PHP, availability of PHP extensions,
version of MySQL, database access permissions,
accessibility of network ports, read/write access
permissions of log files and directories. Some of my
products have 50 or more different integration tests.
In addition to the integration tests, you need soft-
ware that will start all of them together and display

a summary report in a user-friendly format. Then,
you can show this report to the customer, indicating
the problems with the server. Once they are fixed,
your product works as if it were installed on your
local machine. Easy!

phpRack simplifies this work, and allows you to
write integration tests quickly and easily. phpRack
is the first product of its kind (at least, I didn’t
find any similar testing frameworks on the market).
phpRack is a free open-source product. I’ll explain
further how to start using it in only five minutes,
and how to write different integration tests using it.

How to Install phpRack and Create Your
First Test
All you need to install phpRack on your server or
shared hosting account is to download it from the
phpRack site (see Related URLs), and copy it to the
server. Then create a PHP script, and write at least
one integration test. The script must be available to
your HTTP server and accessible from the web. For
example:

// file name is phprack.php
$phpRackConfig = array('dir' => './rack-tests');
include './phpRack/bootstrap.php';

Firstly, you define a single global variable
$phpRackConfig, telling the framework where your inte-
gration tests are located (a more detailed example
of this can be seen in Listing 1, and we’ll return to
this variable later). Next, you include the framework
bootstrapping mechanism. We assume that you up-
loaded the framework to a directory called phpRack.

 1. $phpRackConfig = array(
 2. 'dir' => './rack-tests',
 3. 'auth' => array(
 4. 'username' => 'myusername',
 5. 'password' => 'mypassword',
 6. 'onlySSL' => false,
 7.),
 8. 'htpasswd' => './.htpasswd',
 9. 'notify' => array(
10. 'email' => array(
11. 'transport' => array(
12. 'class' => 'smtp',
13. 'host' => 'smtp.gmail.com',
14. 'port' => '25',
15. 'tls' => false,
16. 'username' => 'myusername',
17. 'password' => 'mypassword',
18.),
19. 'recipients' => 'admin@example.com'
20.),
21.),
22.);
23. include './phpRack/bootstrap.php';

LISTING 1

Li
ce

ns
ed

 to
 4

66
25

 -
 Y

eg
or

 B
ug

ay
en

ko
 (

eg
or

@
te

ch
no

pa
rk

co
rp

.c
om

)

June 2010 32 www.phparch.com

Integration Testing with phpRack Framework

Next, you create a simple integration test, placing
it into rack-tests/MyTest.php. For example:

class MyTest extends phpRack_Test
{
 public function testPhpVersionIsCorrect()
 {
 $this->assert->php->version->atLeast('5.2');
 }
}

That’s it, configuration is done. Try to open your
phprack.php file in a browser, and see the result. You
should see something similar to the output seen at
http://www.phprack.com/phprack.php.

The integration test we just created does not do
much. It validates that the server has PHP version
5.2+ installed, not earlier. This looks simple, but an
incompatible PHP version is one of the most com-
mon sources of error during deployment. Your local
machine has PHP 5.2, and you assume that the cus-
tomer’s server also runs the same version. In many
cases, such an assumption is false. Moreover, the
server can be modified at any time. Once the inte-
gration test is written, neither you nor your custom-
er should forget that the product requires PHP 5.2.

By the way, if you’re familiar with unit testing,
this approach will look similar. Later, we will discuss
how to use phpRack in your continuous integration
environment, together with Phing.

Where, When and Why You Might need
Integration Tests
Let’s review a number of use cases where integra-
tion tests would have saved you time and effort and

spared the nerves of your customers and end-users.
Some of them might look familiar, and others are
less obvious, but I encourage you to use as many
such tests in your application as possible. Imagine
that an integration test is your representative at the
remote location, asking questions and validating
answers received:

PHP Configuration The installed version of PHP
must be 5.2 or higher. Thesimplexml, fileinfo, and soap
extensions are required. The short_open_tag configura-
tion setting must be set to ON.

Disc and System Files PHP scripts in the web
environment must have write access to log files. The
disc storage must have enough space for at least
100Mb of free space, for example.

Databases and DB Servers The MySQL server ver-
sion must be 5.0 or higher. The server must allow
access to a pre-configured user. The database must
exist on the server and must have a table named
project.

Source Code All source files are valid according to
phplint. This also applies to XML and JS files.

Cloud Resources Cloud storage is accessible in the
network. Third-party network resources are available,
ports are open and login credentials work.

PeAR Packages Required PEAR packages are in-
stalled, and their versions are equal to or higher
than required.

System Performance Performance of the produc-
tion platform is higher than the minimum required
for the product. The file system engine is fast
enough.

Third-Party Software Required software

components are installed and configured as required
(for example, an SMTP server).

This is just a sample list of situations when inte-
gration tests could be very helpful. All validations
could be done manually, but imagine how much time
it would take to do all of them every time you have
a strange configuration problem on the production
server. Furthermore, it’s absolutely impossible to do
them manually, say, every hour.

Format of Assertions is Simple
Every phpRack integration test is a small PHP class
with a number of methods, whose names start with
the test prefix. All phpRack instruments are acces-
sible inside these methods by means of the assert
shortcut. For example:

public function testSomeAssertions()
{
 $this->assert
 ->isTrue(is_readable('log.txt'))
 ->isTrue(ini_get('short_open_tag'));
}

By design, every assertion returns $this which allows
us to use a fluent interface for a number of consecu-
tive calls, as in the example above.

It is not mandatory to use assertions in all inte-
gration tests. For instance, if you are retrieving the
content of a log file and showing it to the end user,
you don’t assert anything. Such a test doesn’t have
any result and will be ignored in batch mode.

phpRack has a library of assertions which make the
design of integration tests easy and convenient. For
example:

Li
ce

ns
ed

 to
 4

66
25

 -
 Y

eg
or

 B
ug

ay
en

ko
 (

eg
or

@
te

ch
no

pa
rk

co
rp

.c
om

)

http://www.phprack.com/phprack.php
http://www.php.net/assert

June 2010 33 www.phparch.com

Integration Testing with phpRack Framework

public function testSomeAssertions()
{
 $this->assert->disc->file->isReadable('log.txt');
 $this->assert->php->ini('short_open_tag');
}

In general, you are encouraged to use the assertions
library instead of writing your own mechanisms. A
full reference to the library is available online at
http://www.phprack.com/.

Similar to unit testing frameworks, in phpRack you
have the ability to override two “magic” methods in
any integration test: setUp() and tearDown(). These are
respectively called before and after every test meth-
od. These magic methods are very useful when you
want to instantiate and configure some supplemen-
tary variables. You can’t override a constructor, but
you can use the virtual method _init() if and when
you want to pre-configure your integration test. As
seen in Listing 2, such a method is a good place for
setting the AJAX-related options of a test.

Continuous Integration with phpRack
First and foremost, an integration test is a server-
side script that automates your routine manual
testing operations in the production environment. A
bigger benefit is that when you are using integration
tests as part of your continuous integration cycle,
phpRack can run integration tests not only one-by-
one, but in a batch, reporting to you the overall
result. If all integration tests return successful, your
build scenario can continue, otherwise it fails. Let’s
review an example (see Listing 3).

A typical build scenario in a PHP project could

include the following steps (exactly in the given
order):

• validation of source code syntax using
PHPLint

• unit testing with PHPUnit
• deployment by FTP

One of the best tools to automate this process is
Phing, which allows you to specify the scenario just
once in an XML config file and execute it automati-
cally when necessary (see Listing 3 for an example).

Phing ensures that every consecutive step in the
build scenario is started if, and only if, a previous
one finished with success. Thus, if PHPLint valida-
tion found a syntax error in your code, Phing would
not start unit testing and the product would not be
deployed.

The rule of thumb is that each and every test you
add to the build scenario before deployment adds
quality to the product. In other words, you should

 1. class LoadTest extends PhpRack_Test
 2. {
 3. protected function _init()
 4. {
 5. $this->setAjaxOptions(
 6. array(
 7. 'reload' => 5,
 8.)
 9.);
10. }
11. public function testServerStatus()
12. {
13. $this->assert->shell
14. ->exec('whoami 2>&1', '/apache/')
15. ->exec('df 2>&1')
16. ->exec('free -t -m 2>&1')
17. ->exec('uptime 2>&1')
18. ->exec(
19. 'ps o "%cpu %mem time command" ax'
20. . ' | sort -k 1 -r'
21. . ' | head -5'
22.);
23. }
24. public function testViewLog()
25. {
26. $this->assert->disc->file->tail(
27. '/home/me/log.txt',
28. 10
29.);
30. }
31. }

LISTING 2

 1. <?xml version="1.0" ?>
 2. <project name="MyProject" basedir="." default="main">
 3. <target name="main" depends="lint, test, deploy">
 4. </target>
 5. <target name="lint">
 6. <phplint haltonfailure="yes" level="verbose">
 7. <fileset dir="${project.basedir}">
 8. <include name="**/*.php"/>
 9. <include name="**/*.phtml"/>
10. <exclude name=".svn/**"/>
11. </fileset>
12. </phplint>
13. </target>
14. <target name="test">
15. <includepath classpath="${project.basedir}"/>
16. <includepath classpath="${project.basedir}/test/"/>
17. <phpunit haltonerror="yes" haltonfailure="yes">
18. <batchtest>
19. <fileset dir="${project.basedir}/test">
20. <include name="**/*Test.php"/>
21. <exclude name="**/Abstract*.php"/>
22. <exclude name=".svn/**"/>
23. </fileset>
24. </batchtest>
25. </phpunit>
26. </target>
27. <target name="deploy">
28. <ftpdeploy username="deployer" password="K9Pw3F"
29. host="ftp.example.com">
30. <fileset dir="${project.basedir}/src">
31. <include name="**/*"/>
32. <exclude name=".svn/**" />
33. </fileset>
34. </ftpdeploy>
35. </target>
36. </project>

LISTING 3

Li
ce

ns
ed

 to
 4

66
25

 -
 Y

eg
or

 B
ug

ay
en

ko
 (

eg
or

@
te

ch
no

pa
rk

co
rp

.c
om

)

http://www.phprack.com/

June 2010 34 www.phparch.com

Integration Testing with phpRack Framework

validate the product before it goes to the production
environment. Once it’s there, your users will validate
it, and blame you for errors.

The next step in automation is to use continu-
ous integration (CI) software such as CruiseControl
or Hudson, which can be configured to run Phing as
soon as you make any change to the source code.
Once you make a new commit to your source code
repository, CI software updates its own copy of the
repository and starts Phing. If your change didn’t
break any quality validators (syntax, unit tests,
etc.) that go before deployment, the product will be
successfully deployed. Otherwise, you will receive a
notification, and CI will try to run Phing again some
time later, perhaps after your next commit or on a
schedule.

Integration tests are different from all other tests
you might run before deployment. Integration tests
must be executed after deployment, when the prod-
uct is already in the production environment. If any
problem is found, Phing must report a failure of the
entire build scenario. Thus, your build scenario will
looks like this:

• PHPLint
• unit testing with PHPUnit
• deployment by FTP
• integration testing with phpRack

Integration tests are run on the production server,
and in order to execute them, Phing must make an
HTTP request to phpRack on the server. phpRack will
execute all integration tests, collect their results

in a complete report and respond to Phing with it.
Simple regular expression matching will tell Phing
whether this report means success or failure. This
is an example <target> for our build.xml file, which
hooks it to phpRack:

<target name="phpRack">
 <http-request
 url="http://phprack.com/phprack.php?suite"
 authUser="myusername" authPassword="mypassword"
 responseRegex="/PHPRACK SUITE: OK/" />
</target>

It is assumed that the continuous integration cycle
never stops, even when the product is not actively
developed but is in its maintenance phase.

More Than Just Testing
phpRack is designed as a server-side testing engine
and a web front end. The front end communicates
with the testing engine by means of AJAX calls,
starting/stopping tests and indicating their results.
In addition, you can alter the behavior of the front
end in order to get much more functionality than
just testing.

Consider the example in Listing 2. This is an inte-
gration test with configuration instructions inside a
virtual method _init(). Setting reload to five, we in-
struct phpRack to restart the test every five seconds
and refresh its result on a web page. Thus, with just
one option we’ve built a simple server monitoring
console.

The code inside testServerStatus() will execute shell
commands one-by-one and show their result. No
testing is done here, just delivery of text from server

to web front end. Only one call to exec() performs
testing - exec(’whoami’). This call has a second pa-
rameter, a regular expression, which you may have
already noticed. phpRack will try to match the result
of shell command execution with the regular expres-
sion provided, and if they don’t match, the test will
fail.

The method testViewLog() doesn’t test anything, but
retrieves and delivers the last ten lines of the log
file to the web front end. Since the entire integra-
tion test LoadTest will be reloaded by the web front
end every five seconds, you will see the latest ten
lines of the log on-the-fly. The same result can be
achieve with a phpRack analog of the Unix command
tailf:

class LogTest extends phpRack_Test
{
 public function testViewLog()
 {
 $this->assert->disc->file->tailf('log.txt');
 }
}

phpRack simplifies this
work, and allows you to
write integration tests
quickly and easily.

Li
ce

ns
ed

 to
 4

66
25

 -
 Y

eg
or

 B
ug

ay
en

ko
 (

eg
or

@
te

ch
no

pa
rk

co
rp

.c
om

)

http://www.php.net/exec()

June 2010 35 www.phparch.com

Integration Testing with phpRack Framework

The tailf() assertion will keep the latest twenty-five
lines of the file visible on web, and will refresh them
every second. This, as with all parameters, is con-
figurable.

Complete Configuration Manual
As said before, to configure phpRack for your prod-
uct, you should create a single phprack.php file where
you include bootstrap.php from phpRack. There is one
global variable: $phpRackConfig used in order to pass
configuration parameters to the framework. Listing 1
has an example of your phprack.php file.
dir is the only mandatory parameter in this array.

Its value should contain a relative or an absolute
path to the directory with integration tests. A rela-
tive path should start with double dot (..) and will
be resolved in relation to the location of the phprack.
php file.

The auth parameter enables you to protect inte-
gration tests against public access. You can provide
username and password or you can use the htpasswd
parameter in order to provide a list of login creden-
tials. The format of the file is the same as in Apache
Server: username, colon, and the MD5 hash of the
password. Instead of a file, you can provide an array
of usernames and passwords without MD5 hashing.
For example:

$phpRackConfig = array(
 'htpasswd' => array(
 'john' => 'jf7mF4',
 'alex' => 'Y6rT5p',
)
);

The auth/onlySSL parameter explicitly instructs
phpRack that only SSL encrypted web connections
are allowed.

The notify parameter instructs phpRack to notify
you when integration tests fail. For example, the
email notifier will send a summary report by email
if and when a problem is found. Notification is sent
only when tests are executed in a batch mode, not
individually.

For email notification, the recipients parameter
may contain either one email address or an array of
email addresses that will receive summary reports.
The transport parameter may be omitted if your
server allows you to send emails using the standard
PHP mail() function (through sendmail).

Future Development of the phpRack
Framework
The phpRack framework, in its first version, is al-
ready a powerful tool for a project of almost any
size. However, there are a number of features we are
going to release in the next versions, including:

Test Suites - To simplify the process of test de-
sign, we will introduce a library of test suites, which
will provide ready-to-use collections of tests for cer-
tain purposes. For example, the ServerHealth suite
will retrieve and display all available information
about server load, check server performance, and
detect server overload problems.

Adapters - We will develop adapters for differ-
ent database servers, including non-relational ones
and for different types of network/cloud resources,

including Amazon, Rackspace and Azure. We will also
create translators for different file types, which will
enable on-the-fly retrieval of file properties.

notifiers - Different notifiers will be developed,
which will allow you to stay informed by SMS, via
your Twitter account, on IRC or through any custom-
configured XML RPC or SOAP server.

phpRack is developed by a small distributed team
of PHP engineers. You can join our team, or if you
have ideas or suggestions about future features,
please email us at team@phprack.com.

Conclusion
Integration testing is a powerful tool for a web
project of any size. Similar to unit testing, the more
time you spend writing integration tests, the more
time you save with debugging and installation.
Integration testing is a mandatory mechanism if a
product is likely to exist in multiple installations, or
its production environment might be changed from
time to time.

phpRack is an open-source software, which en-
ables fast and easy development of integration tests
and their use within continuous integration environ-
ment.

YEGOR BUGAYENKO is the lead architect of phpRack
Framework and a proud holder of the ZCE, ZFCE and
PMP certificates. He is also the director and co-founder
of TechnoPark Corp., a custom software development
company specializing in complex and distributed web
applications.

Li
ce

ns
ed

 to
 4

66
25

 -
 Y

eg
or

 B
ug

ay
en

ko
 (

eg
or

@
te

ch
no

pa
rk

co
rp

.c
om

)

http://www.php.net/dir
http://www.php.net/..
http://www.php.net/mail()

