
The Interactive Databases Approach to the UserInterface ModelingEgor BugaenkoMIKA CorporationUkraine, 320044,g.Dnepropetrovsk,ul.Dzershinskogo, 7/33phone: (380 562) 461 058fax: (380 562) 461 136Email: egor@acm.orgMarch 14, 1998

AbstractThe proposed principle of Interactive Databases (IDB) is intended to improveclient-server interaction and to avoid database integrity constraints violation. Inorder to make the client more clever and give it the opportunity to make prelim-inary decisions regarding the correctness of the transactions without the server,we de�ne the formal mechanism of \step-queries" de�nition. This mechanismis used as a tool for the conversion of the knowledge the DBMS has into theconcrete collection of DML queries. Step-queries are used by the client. It sendsthem to the server before the transaction and the retrieves lists of possible val-ues for the �elds of the visual form. Then, these lists are used in order to givethe user an opportunity to choose correct value for the given �eld. After theform has been completed the transaction could be �lled with entered data.After the formal description of step-queries they must be mapped to DML.Here we will de�ne the algorithm of such mapping into SQL and show how itcould be used in order to implement the IDB principle.Keywords: transactions veri�cation, client-database interaction, visual form,predicate calculus, SQL, step-query.

1 IntroductionConsider the process of interaction between a client and a database server.In our case interaction means adding and retrieving information to/from thedatabase. In order to add some data to the database, the following operationsmust be accomplished: 1) the client obtains data from the user and prepareit; 2) the client expresses the transaction in some data manipulation language(DML); 3) the client sends a transaction to the server; 4) the server commitsor aborts the transaction; 5) the server returns a result or an error code to theclient.Database management systems (DBMS) can have data integrity constraintsexpressed in the schema which can restrict the addition of new data to thedatabase. Not having the information which the DBMS has, the client can doalmost nothing to avoid cases when data is not accepted by the server becauseof an integrity constraint violation.The client interacts with the user by means of the visual form - the windowwith several �elds for the information entering. The user can enter data bymeans of \edit boxes", \list boxes" or \combo boxes". It means that the valueof the �eld could be new or may be selected from the \prede�ned" list.For this reason the only way the client can work is to process error codesreturned by the server and to rebuild the transaction, or to re-ask the userto enter the visual form. The latter way is not appropriate if the process ofentering information has many steps and needs active interaction with the user(e.g., visual form has many interdependent �elds).For instance, we need a batch of add-operations to be submitted by theDBMS. Each operation of the batch concerns di�erent objects of the database,e.g., several tuples must be added to di�erent tables in the relational database.The batch is to be accepted as one transaction: everything or nothing will beprocessed. The client gets the data for each operation from the user in a visualform. At the same time, the server checks the conformity of the data only afterthe transaction has been built. With a large amount of data and a large numberof operations in the batch it would be rather di�cult to reenter the whole visualform by the user. Thus, it would be better if the client was aware of whetheror not the data is appropriate during the creation of the transaction.We give it such awareness by means of step-queries de�nition mechanism.The client could interact with the server during the period of the visual formcompleteness. We name the system which uses this paradigm Interactive DataBase (IDB). The algorithm of interaction, formal approach to step-queries def-inition and examples are discussed further.The paper is organized as follows. In the second section we overview thebackground of the problem and related works. The third section gives severalformal de�nitions. The forth section is dedicated to the general description ofthe IDB principle. The �fth section gives a short description of the client'salgorithm in the IDB systems. Advantages and performance of the example aredescribed in the sixth section. Then we conclude.
1

2 Background and Related WorksThe database is a collection of objects also called data [7]. The database hasa conceptual schema | data model. There are several modern data models:relational citecodd, object-oriented [3], object-relational and others.Besides data objects the data storage always contains meta information,concerning data structure and logical constraints | knowledge. In order torepresent them di�erent approaches were proposed. KIF [10] as a format forknowledge interchange is based on Lisp and �rst-order predicate calculus. Itprovides the ability for disparate programs to communicate [13]. We proposethe method of knowledge representation which has much in common with KIFbecause predicate calculus is used in both. There are many other systems forknowledge processing: LOOM [17] (a KL-ONE style system), Epikit [9] (a pred-icate calculus system), Algernon [6] (a frame system), CycL [16], KEE [8], andothers. Almost all of them use predicate calculus as a tool to express metainformation.First-order predicate calculus [22, 12, 4] is used as a formal ground in themajority of meta data manipulating systems [15]. At the �rst part of the IDBprinciple the mechanism of knowledge representation is used for the expressingof the meta information. We use a \one moment" insight to the database.Thus we miss the information about temporal properties of the database [7]and we do not take into account triggers and rules within the DBMS [27]. The�rst disadvantage could not be avoided by means of the IDB approach. Thesecond one is a problem for the future work.After the formal de�nitions are completed we propose the interaction withthe database in transaction mode. The domain of transaction processing [11] isused as a ground for the IDB principle. While the client enters information inthe visual form it interacts with the server by means of SQL queries [18, 14].Transaction management is not in the frame of the IDB principle and thus notdiscussed.SQL is used in the example to show how step-queries could be mapped frompredicate calculus to the real data manipulating language. Several approachesto the problem, concerning this translation, were given [21]. Any of them couldbe used in concrete IDB principle implementation system. In the industrialapplication \N96" we use simpli�ed algorithm of the predicate calculus to SQLmapping described below. Complete description of the algorithm could be foundin [2].Besides data management the IDB principle concerns human-computer in-teraction [19] and bases the idea of \step-queries" upon the Dynamic Queries [24]and Dynamic Query Interfaces [25] approaches. The main goal of these paradigmsis to design the communication with the user clearly and improve the cost ofaccess to large data repositories. The same result must be accomplished bymeans of the proposed IDB principle.3 Formal De�nitionsIn this section several formal de�nitions are given. Data schema, transaction,invariant and step-query are de�ned in terms of predicate calculus [22]. The2

following de�nitions express simple approach to the formal database theory [7].Here we do not take into account temporal properties of the database and predictthat everything is done at once. At the end of the paper we will describe thesituation when the database is changeable in time.The section contains only de�nitions without any concretization. The de�-nitions are given for the sake of uniformity within the problem. Many of themare not identical with the well know existing de�nitions.3.1 Data SchemaThe database is a collection of objects, along with some invariants or integrityconstraints on these objects. Data schema is logical equivalent of the database.Both database and data schema contains objects. But the object of the databaseis an element of data, when the object of data schema is a piece of knowledge.For example, the database objects are: string \Egor Bugaenko", number$25.000, table suppliers, domain names, constraint has name, etc. The dataschema objects are: the description of the relation suppliers, the de�nitionof the domain names. Only data integrity constraints are at the same timeelements of data and of knowledge.De�nition 1. We de�ne data schema as an aggregate:Sch(A; T;C), whereA | is a set of objects of schema, which include data objects:A = fa1; a2; : : : ; ang;T | is a collection of structures of data schema;C | is a collection of integrity constraints.In the relational database ai is a domain or a data type. In an object-orienteddatabase ai could be an abstract data type (ADT) or a class. Obviously, eachelement of A is a set: ai = f�1; �2; : : : ; �Dig, where�1; �2; : : : ; �Di | are concrete data elements, e.g. integer and real numbersor strings.Di | is a size of the i-th domain or the number of objects in class \i".Endless set T = ft1; t2; : : : ; ti; ti+1; : : :gis a collection of sets, which include all structures of the schema. Eachelement ti of T consists of i-arity structures. Thus,ti = f�1; �2; : : : ; �j ; : : : ; �Kig;where 3

�j = fax1 ; ax2 ; : : : ; axig:Again, set t1 contains all unary relations (relational database) or all classes(object-oriented database). Set t2 consists of all binary relations or unary at-tributes etc. Ki is a number of structures of arity i in the schema (e.g., K1 is aquantity of unary relations). Indexes x1; x2; : : : ; xi de�ne which schema objectsare used in the structure �j .The third component of the schema de�nition is a collection of integrityconstraints C = fc1; c2; : : : ; cZg. C is a set of predicate calculus expressions(invariants). The necessary condition of the database integrity could be de�nedas follows: 8�(8c((c 2 C)! c(A�)));where A� = A(time)It means that every time � all elements of C must be true on the set A.3.2 TransactionA transaction is an operation that transforms one database state to another.Transaction consists of several operations which must be committed or rejectedatomically (as one unit of job). We do not take into account the state before thetransaction. We treat the transaction as a condition which the database mustsatisfy after the execution of the operations. The conditions must be expressedin predicate calculus.De�nition 2. The transaction E is a couple consisting of a collection ofvariables (set V) and a conjunction of predicates (expression D). Each elementis an element of T with variables from V as arguments:E(V;D);where V = fv1; v2; : : : ; vF g;and D is an expression in predicate calculus and must be a conjunction ofpredicates. F is a number of variables.Thus, D must be a function of F arguments. We could state that thetransaction will be accepted i� D is true. Certainly, if the database is stable intime. The result of the transaction is a logical value, which is equal to:E(V;D) = � true if D(v1; v2; : : : ; vF) is true;false otherwise.Moreover, the transaction is a formal equivalent of the visual form. Thetransaction represents the sequence of �elds of the form and logically de�nesthe procedure of data insertion. Thus, F is a number of �elds within the form.4

3.3 InvariantDe�nition 3. Invariant is an expression in predicate calculus which must bea true for all objects of some set.For example, the following invariant requires, that each element of set boysmust also be a member of set children:I = 8x(boys(x)! children(x)):Further the following abbreviation is used to state that the element belongsto some set: S(x), x 2 S, whereS | is a set, e.g., a member of set A or one of sets t1; t2; : : : ; ti; : : : of set T .3.4 Step-queryThe query to the database is a declarative de�nition of a set. Step-query doesnot di�er from the usual query. Step-queries are used in order to show thedi�erence between alone queries and queries within the IDB principle. Further,it is shown how they distinguish.De�nition 6. Step-query is a formal de�nition in terms of predicatecalculus of a set: QS = fx : P (x)g;whereS | is a result of the step-query QS;P (x) | is a predicate calculus expression with one unbounded variable.For example, the following expression is a step-query:Qguys = fx : children(x) & boys(x)g;and the result of this step-query is a sequence of all elements of set children,which at the same time are elements of the set boys. Moreover, the result ofthe step-query could contain elements of di�erent sets.4 The IDB PrincipleConsider the example of an information system, consisting of one server andseveral clients, which send and receive data. Each client prepares data for theserver and sends it as a transaction. The server accepts either all operations inthe batch or none of them. The source of information is a user, who in interactivemode enters data into the relative �elds of the visual form. The client interpretsthe form and converts it to the transaction of some data manipulation language(e.g., SQL). 5

The transaction contains several simple independent operations, which con-cern di�erent structures in the database. For example, the transaction couldconsist of two operations, which add data to di�erent tables of the relationaldatabase. Operations are independent only from the clients' point of view,because the DBMS can contain structures which bind these two tables.After populating the form, the client builds the transaction and sends itto the DBMS. The server checks whether it is possible to accept the entiretransaction. If it is not acceptable for any reason (e.g, violation of at least oneof the integrity constraints, blocking of some structure, permission denying etc.)the server returns an error code. According to the error code, the client returnsa message to the user and proposes either to correct the form or to eject it.4.1 The SolutionWe propose the following idea: we give the client the possibility to check dataat each step when populating the form and before sending the informationto the server. This can be achieved by duplicating the meta information ofthe database (data schema and integrity constraints) within the client's localmemory and exploiting this information to build step-queries at each step of thedata entry.As a result, we provide the client with the ability to decide at each stepwhich data is correct and correlative to the other information in the database.To do this, we de�ne the principle of Interactive Data Bases (IDB) whichis based on the paradigm above. The decision concerning data correctness andcorrelativeness is done at each step of the form completion by sending step-queries to the server and obtaining lists of acceptable values which can be enteredinto the given �eld. Step-queries are built using the formal de�nition of the dataschema, including integrity constraints which the client has.Thus, the interaction between the client and DBMS consists of the followingsteps:� Formal de�nition in predicate calculus of the data schema of the database,with which the interaction will be done. The de�nition is needed to obtainthe necessary meta information for building step-queries.� Formal de�nition of the transaction.� Formal de�nition of step-queries for each step of the form completion.These de�nitions will provide the possibility to formally process queriesand eliminate redundancy.� Mapping the step-query expression in predicate calculus into the querywith a data manipulation language (e.g., SQL).� Sending the query to DBMS and translating the result.The step-query is sent to the DBMS to be processed. The result is usedas a list of possible values for the �rst �eld of the form. The user selects anitem from the list and the program �lls the �rst �eld of the form with its value.Then this value is taken into account when creating the other step-queries. The6

transaction is completed as a result of consecutive requests to the DBMS andthe insertion of these values from the form into the text of the transaction.All formal de�nitions are done in �rst-order predicate calculus. Data schemaand transaction must be de�ned in logic because of the necessity of formaltranslation method, which could be based only upon formal de�nitions. Step-queries are de�ned in predicate calculus for the following two reasons: 1) theuse of uni�ed tool for the description of the step-query allows us to make manydi�erent translators into di�erent data manipulation languages (e.g., SQL, OQLetc.); 2) data schema and transaction are de�ned in predicate calculus and thusthe most appropriate for step-queries de�nition language is �rst-order predicatecalculus.Very important to note, that the proposed IDB principle does not have any-thing in common with the multilevel transaction model found in object-orientedDBMS. In advanced database systems such mechanism allow to commit or aborta sub-transaction without committing or aborting the whole transaction. Wedo not propose to divide the transaction into smaller ones and to proceed themindependently. The IDB principle improves the process of transaction veri�ca-tion at the time of the visual form populating. While the user enters data intothe given �eld the system (client) checks whether the information is correct. Atthat time the client does not have rights to enter anything into the database.Only to check the conformity and relativeness.4.2 Formal Schema and the Transaction De�nitionFor the description of the IDB principle we will use the following simple example.Data schema and the visual form follow (in the relational database).waybill supplierwaybill supplierwaybill truck supplier trucktruckThe de�nition of the transaction follows from the de�nition of the visualform. Note that the succession of �elds in the form is important.Waybill number: waybillTruck number: truckSupplier name: supplierFormal schema de�nition Sch(A; T;C) consists of the de�nition of A, T ,and C. Set A must be de�ned as a sequence of objects of schema and includedomains of all relations and data types used in the schema:A = fa1 = string;a2 = twaybill;a3 = tsupplier;a4 = ttruckg:Set T must be de�ned as an in�nite aggregate of sets, which include allstructures of the schema: 7

T = ft1 = f;g;t2 = f�21 = waybill(id : twaybill;name : string);�22 = supplier(id : tsupplier;name : string);�23 = truck(id : ttruck;name : string)g;�24 = ws(w : twaybill; s : tsupplier);�25 = wt(w : twaybill;t : ttruck);�26 = st(s : tsupplier;t : ttruck);t3 = f;g; : : :gFurther, we consider only those elements of T which are not equal to ;. SetC must be de�ned as a collection of invariants in predicate calculus which areequivalents to data integrity constraints of the database:C = fc1 = 8t(truck(t;tname)! (9s; w((st(s; t) &wt(w; t))! ws(w; s))));c2 = 8s(supplier(s; sname)! (9m;w((st(s; t) &ws(w; s)) ! wt(w; t))))g:The transaction must be de�ned as E(V;D), where V = fv1; v2; : : : ; vF g.From the de�nition of the visual form follows the consequence of �elds andvariables in V : V = fw : twaybill; t : ttruck; s : tsupplierg:In order to de�ne D we must select from t1; t2; : : : ; ti; ti+1; : : : those elementswhich include at least one element from V as an argument and insert them allinto D as conjunctors:D = ftruck(t;tname) & supplier(s; sname) &waybill(w;wname) &ws(w; s) &wt(w;m) & st(s;m)g:4.3 Step-queries de�nitionStep-queries are de�ned while the client program is being developed and mustbe used at run-time. They are de�ned by means of the proposed IDB principleon the base of the de�nitions of data schema and transaction as described above.Step-queries must be de�ned according to the necessity of using the relative�eld in the visual form. Preliminarily, the query must be de�ned as a predicatecalculus expression. This formulae must contain one of the elements of set V asbounded variable under universal quanti�er and a conjunction D, which followsthe quanti�er. For example, the de�nition of the query for the list of possiblevalues for �eld truck looks like the following:Qttruck = ft : P (t)g;where P =truck(t;tname) &supplier(s; sname) &waybill(w;wname) &ws(w; s) &wt(w; t) & st(s; t):After this, the predicate P must be expanded taking into account all expres-sions from the collection C. 8

P =truck(t;tname) &supplier(s; sname) &waybill(w;wname) &ws(w; s) &wt(w; t) & st(s; t) &8t(truck(t;tname)!(9s; w((st(s; t) &wt(w; t))! ws(w; s)))) &8s(supplier(s; sname)!(9m;w((st(s; t) &ws(w; s))! wt(w; t)))):Still, the unbounded variables s and w are concretized relatively to the al-ready entered �elds. Either they are changed to concrete values which havebeen entered before. Or, if such values do not still exist, all predicates withunde�ned variables as arguments must be deleted from the list of conjunctorsof the expression.Then, all predicates without �eld variable within the list of arguments mustbe excluded from the list of conjunctors. Thus, from Ptruck all predicateswithout variable t in the list of arguments must be deleted. Consequently, thepredicate Ptruck must be transformed to the following:P =truck(t;tname) &wt(w1234; t) &8t(truck(t;tname)!(9s; w((st(s; t) &wt(w1234; t))! ws(w1234; s)))):where w1234 is a concrete value from the domain twaybill.When the formulae of the step-query contains only predicates with boundedvariables and constants as arguments, it is possible to prove the following the-oreme:Theorem 1. Any element from set R, received in the moment t as a resultof applying of QR to the database with schema Sch(A; T;C), will be relevantto all invariants of C in the moment t+ � i� At = At+� .Proof. The theorem can be proved by induction. First, when C is equalto ;, the result of the query will always be equal to R, and all elements will berelevant to the empty set C.Secondly, let any element r from the subset of set R be relevant to all in-variants of the set C = fc1; c2; : : : ; cZg. Thus, we should prove that r will berelevant to all invariants of set C1 = fc1; c2 : : : ; cZ ; cZ+1g, if it is relevant to theinvariant cZ+1.De�ne J as a conjunction of all invariants of set C: J = c1 & c2 & : : : & cZ .Then, exclude from J all invariants, which do not concern set R, (i.e are alwaysa true value whatever r is). We will obtain a conjunction J1 which is a part ofthe expression of the query QR, except for static de�nitions.By de�nition, r is relevant to QR and thus is relevant to J1, too. Conse-quently, r is relevant to J because all excluded invariants (J1 � J) are always atrue value no matter what r is.Because r is relevant to J and by the de�nition to cZ+1, it is also relevant toJ & cZ+1 (i.e. r is relevant to all invariants of C = c1& c2& : : : & cZ & cZ+1).As shown in the proof for the theorem, all elements of set R will satisfy allinvariants from C i� the data is constant. It means that the following eventcould violate the correctness of the IDB principle and invalidate the proof: theconcurrent access to the given set. It could really happen, because we do not9

lock the database while the user populates the visual form. If do it, than alladvantages of the IDB principle will be lost.4.4 Predicate Calculus Queries Mapping to SQLThe predicate calculus expression of the query could be mapped to the datamanipulation language SQL. Further we assume that a relational database isused. According to this assumption all elements of T are tables and all elementsof all �i are attributes. All elements of A are domains.As was de�ned above, the queryQS = fx : P (x)gis a formal de�nition of the result set. The predicate calculus expression P (x)must be converted to SQL conditional expression. Predicate calculus containsseveral operators and quanti�ers, each of which could be expressed by meansof some another [22]. In order to describe the principle of \predicate calculusto SQL" conversion, we must de�ne several rules for this \primitive" operatorsand quanti�er mapping.The de�nition of the formulae in predicate calculus follows:1. Predicate is a formulae and looks like the following:P (d1; d2; : : : ; dn);where P is a table (element of T) and d1; d2; : : : ; dn are attributes of thistable;2. If x and y are formulas thenx; x _ y; 8x(P (x))| also are formulas;3. Thus all formulas in predicate calculus are de�ned.We treat x ^ y as an abbreviature for y _ y; 9x(P (x)) for 8x(P (x)); andx! y for x_ x _ y. Using the rules above, any expression in predicate calculuscould be simpli�ed to the formulae with OR and NOT operators and a universalquanti�er. Thus, we must de�ne the rule for the conversion of these \primitive"constructs.The step-query must be converted to the select operator. Any domainfrom any predicate of the query expression could be chosen as a table for theselection. Then the following SQL construct must be built:select attributefrom tablewhere other-attributes-conditionsand conditions-list.10

Conditions-list is a list of conditions built from the predicate calculus for-mulae P (x). Other-attributes-conditions are made according to the attributesof the table, used in the selection. In the example the conditions should looklike (w = \w1234");if table ws was chosen as a table for the selection. The rules for theconditions-list formulating are de�ned in several statements:1. Predicate P (d1 = a1; d2 = a2; : : : ; dn = an)must be converted to(select d1from Pwhere not ((d1 = a1) and (d2 = a2) and : : :and (dn = an)) is null2. Logical disjunction x _ y of two predicates must be converted tox or y;3. Negation x must be converted tonot x;4. A universal quanti�er8x(P1&P2 & : : : Pi(di1 ; di2 ; : : : ; dij = x; dij+1 : : : ; dim) &Pi+1 & : : : &Pn)must be converted to(select d1from Pwhere not ((di1 = a1) and (di2 = a2) and : : :and (dij = x)and : : : and (dim = am) andP1 and P2 and : : : and Pi�1 and Pi+1 and : : : and Pn))is nullWhere a1; a2; : : : ; an are attributes of the table P .Although, these four rules completely de�nes the mapping of the predicatecalculus to the SQL expressions we de�ne the following additional rules for thesake of convenience:1. Logical conjunction x ^ y of two predicates must be converted tox and y;11

2. An existential quanti�er9x(P1 &P2 & : : : Pi(di1 ; di2 ; : : : ; dij = x; dij+1 : : : ; dim) &Pi+1 & : : : &Pn)must be converted to(select d1from Pwhere (di1 = a1) and (di2 = a2) and : : :and (dij = x)and : : : and (dim = am) andP1 and P2 and : : : and Pi�1 and Pi+1 and : : : and Pn)is not nullThus, according to the rules above the query Qttruck could be mappedinto the following SQL expression:SELECT truckFROM wtWHERE(w = w1234) AND((SELECT idFROM truckWHERE NOT (id = truck)) IS NULL) AND((SELECT tFROM truckWHERE NOT ((SELECT sFROM stWHERE(NOT ((t = truck.t) AND((SELECT wFROM wtWHERE NOT ((w = w1234) AND (t = truck.t))) IS NULL))) OR((t = truck.t) AND((SELECT wFROM wtWHERE NOT ((w = w1234) AND (t = truck.t))) IS NULL))) AND((SELECT wFROM wsWHERE NOT ((w = w1234) AND (s = st.s))) IS NULL)))IS NOT NULL)IS NULL)Certainly, the expression is not perfect in sense of the compactness butnevertheless it is absolutely correct in sense of logic (see Theorem 1). Theproblem of the expression optimization is for the future work.4.5 Query Results ProcessingThe client sends the query in SQL to the DBMS and obtains the result set.This set will be used as a list of possible values for the relative �eld of the visual12

form. Obviously, the form could contain �elds with the combined mode of valueselection (both from the list and edit box), e.g. combo-box. In such case, a newvalue could be inserted into the transaction without a veri�cation. Meanwhile,the client also could verify the value by means of step-query. The de�nition ofthese queries is not in the frame of this paper.5 The Client AlgorithmIn this section we describe the example algorithm for the client. The IDBprinciple must be used at the time of the program building, and used by thedeveloper of the program. Now we assume that all necessary step-queries havebeen already built and that we have the de�nitions: Sch(A; T;C), E(V;D) andQS1 , QS2 , . . . , and QSn .After the preparation stage completed the client can use the IDB principleby means of the visual form. The routine for the IDB processing must be builtin the "window function" of the form. It could look like the following:1. to show the visual form with N �elds;2. i = 1;3. to send the step-query QSi ;4. to receive the list of possible values for the �rst �eld Fi;5. the user chooses the item (f);6. Fi = f ; i = i+ 1;7. if i < N then goto 3;8. to �ll the transaction with F1; F2; : : : ; FN .6 Advantages and Performance of the ExampleWe implemented the IDB principle in the program \N96" | a part of theAutomated System for Raw Materials Reception \EpMak-N96" [20].The \EpMak-N96" system automates the processing of raw material recep-tion at a factory by means of registration chip-cards with a re-programmabledevice inside. All requisites of the load are stored onto the chip-card when thetruck arrives at the factory. Then, the gross weight is written onto the cardby the electronic truck scales. After the out-loading, the net gross is calculatedand written onto the card.All information from the way-bill is moved to the card by the program \N96".To enter it, the program uses the visual form, which contains over a dozen�elds and has to be edited rather quickly. Almost all of these �elds have somedependency on the others. As a result, the operator must enter these values, soas not to violate these dependencies.By means of using the IDB principle in the program \N96" we achievedseveral important results. First, the time needed to complete the necessaryvisual form was decreased. Secondly, a large amount of data sent from theserver to the client and vice versa was excluded. Third, the work-load of theDBMS decreased due to the decrease in the number of rollbacks.This section describes the advantages of using the IDB principle in the\EpMak-N96" system. The program used in the system was written �rst in13

a usual way, i.e. without improving any of the interaction process. In a veryshort time of the system's exploitation the lack of the approach emerged. Thenumber of drivers became more than �ve hundred and the time of the selectionfrom the menu came close to the critical point. At the same time, the numberof suppliers was over one hundred.We applied the IDB principle to the program and got the following results:� The dataow from the DBMS to the client was decreased due to thedecrease in the number of elements of domains. The dataow from theclient to the DBMS was also slightly decreased, primarily because of thedecreasing of the number of retries.� The server overloading was decreased because of rollbacks avoidance.� The e�ectiveness of the interface was increased and the time it took topopulate the visual form was decreased.Further, we explain each of these three items. As a result of applying theIDB principle to the client-server interaction programming, we received a systemperformance increase in the user interface and data interaction.6.1 DataowDataowmeans the quantity of information sent to/from the server. The sourcesof data are clients. They make the server process transactions and return resultcodes. First, the dataow consists of packets sent from the client to the server(transactions). Each packet contains the text of the transaction with relative�elds' values (e.g., strings, numbers etc.) Secondly, it consists of the result codesreturned by the server. The size of these packets is not valuable but the numberof them reects the number of rollbacks. Third, it consists of step-queries andtheir results, returned by the server.Without the IDB principle. Dataow is increased considerably becauseof rollbacks and step-queries result lists. At the same time the size of thetransaction is constant and step-queries are very small.With the IDB principle. The number of rollbacks is much less and thequantity of transactions falls. Dataow also is decreased because of the decreasein size of the step-queries results. The size of transaction is much bigger thanwithout the IDB principle, though, and step-queries are slightly larger.6.2 The DBMS OverloadingThe DBMS can process the transaction (commitment) or reject it (rollback),depending upon whether all operations of the transaction are relevant to thecontent of the database or not. The server wastes time while working withrollbacks because no useful work is done during rollback processing. Thus,decreasing the number of rollbacks signi�cantly decreases the overloading of theDBMS. 14

6.3 The User Interface E�ectivenessThe user enters data by means of visual form. He or she populates �elds withde�nite values and then sends the form for processing. In order to enter somevalue into the �eld, the user must select it from the list. If the list was shorterit would be more comfortable for the user. If it was necessary to populate theform only once (without re-entering) it would more appropriate. We call it userinterface e�ectiveness.7 ConclusionThe IDB principle was invented in order to simplify the process of transactionprocessing and to provide the client with the ability to verify the information.Before the data is sent to the server the client could obtain the list of possibledata values from the server and could compare. These lists could be retrievedfrom the server by means of step-queries, which are generated using the IDBprinciple.Such approach provides developers with the opportunity to built intelligentclients, vs. simple stubs without any knowledge about server database. Theprinciple was implemented and gave rather good results. The perspective of thework re�nement and improving concerns on-line step-queries generation and\any values" queries making.References[1] E.Bugaenko, IDB Principle as a Mechanism of TransactionsVeri�cation, to be published in Proceedings of the First InternationalWorkshop on Veri�cation, Validation and Integrity Issues in Expert andDatabase Systems in conjunction with DEXA98.[2] E.Bugaenko, Predicate Calculus Step-Queries to SQL Mapping, MIKA,IDB-97-08, 1997, Dnepropetrovsk.[3] Edited by R.G.G.Cattell, The Object Database Standard ODMG-93:Release 1.2, The Morgan Kaufmann Series in Data Management Systems,1996.[4] S.Ceri, G.Gottlob, and L.Tanca, Logic Programming and Databases,New York, Springer-Verlag, 1990.[5] E.F.Codd, A Relational Model of Data for Large Shared Data Banks,CACM vol.13, no.6, 1970.[6] J.M.Crawford and B.J.Kuipers, Toward a theory of access-limited logicfor knowledge representation, in Proceedings of the First InternationalConference on Principles of Knowledge Representation, MorganKaufmann, 1990.[7] C.J.Date, An introduction to Database Systems, Reading Mass.,Addison-Wesley, 6th edition, 1995.15

[8] R.Fikes and T.Kehler, The role of frame-based representation inreasoning, Communications of the ACM, vol.28, no.9, 1985, pp.904{920.[9] M.Genesereth, The Epikit manual, 1990.[10] M.R.Genesereth and R.E.Fikes, Knowledge Interchange Format.Version 3.0. Reference Manual, Logic-92-1, Stanford University, Stanford,June 1991.[11] J.Gray and A.Reuter, Transaction Processing: Concepts andTechniques, San Mateo, Calif., Morgan Kaufmann, 1993.[12] P.M.D.Gray, Logic, Algebra and Databases, Chichester, England: EllisHorwood Ltd., 1984.[13] T.R.Gruber, A Translation Approach to Portable OntologySpeci�cations, KSL-92-71, Stanford University, Stanford, Calif., 1993.[14] International Organization for Standardization, DatabaseLanguage SQL, Document ISO/IEC 9075, 1992.[15] M.Kifer, G.Lausen, and J.Wu, Logical foundations of object-orientedand frame-based languages, Journal of the ACM, vol.42, no.4, pp.740{843,1995.[16] D.B.Lenat and R.V.Guha, Building Large Knowledge-based Systems:Representation and Inference in the Cyc Project, Addison-Wesley, 1990.[17] R.MacGregor, The evolving technology of classi�cation-based knowledgerepresentation systems, In John Sowa, editor, Principles of SemanticNetworks: Explorations in the Representation of Knowledge, MorganKaufmann Publishers, San Mateo, Calif., pp. 385{400.[18] J.Melton and A.Simon, Understanding the new SQL: a CompleteGuide, Morgan-Kaufmann Publishers, Inc., 1993.[19] B.A.Myer, J.D.Hollan, and I.F.Cruz, eds, Strategic Directions inHuman Computer Interaction, ACM Computing Surveys, vol.28, no.4,1996.[20] Automatized System for Raw Materials Reception \EpMak-N96", MIKA,EM2501TO, Dnepropetrovsk, 1997.[21] M.Negri, S.Pelagatti, and L.Sbattella, Formal Semantics of SQLQueries, ACM TODS vol.16, no.3, September 1991.[22] B.I.Plotkin, Universal Algebra, Algebraic Logic and Databases, Moscow,Nauka, 1991.[23] D.Sahlin, An Automatic Partial Evaluator for Full Prolog, The RoyalInstitute of Technology (KTH), Stockholm, Sweden, May 1991, available at�le://sics.se/pub/isl/papers/dan-sahlin-thesis.ps.gz.[24] B.Shneiderman, Dynamic Queries for Visual Information Seeking,IEEE Software, vol.11, no.6, 1994, pp.70{77.16

[25] Egemen Tanin, Richard Beigel and Ben Shneiderman, IncrementalData Structures and Algorithms for Dynamic Query Interfaces, ACMSIGMOD Record, vol.25, no.4, December 1996, pp.21{24.[26] P.Wegner, Why Interaction Is More Powerful Than Algorithms,Communications of the ACM, vol.40, no.5, May 1997, pp.80{91.[27] J.Widom and S.Ceri, Active Database Systems: Triggers and Rules forAdvanced Database Processing, Morgan-Kaufmann Publishers, Inc., SanFrancisco, California, 1996.

17

