
2.4 Choose method names carefully

We’ve already discussed how to name a class in Section 1.1.

Now it’s time to name methods properly. I’m suggesting this

simple rule of thumb: builders are nouns, manipulators are

verbs. Let’s see what it means.

A method that builds something and returns a new object, I

call a builder. Well, I just made this name up, but it looks

logical to me. Builders always return something; they never

return void, and their names are always nouns. For example:

int pow(int base, int power);

float speed();

Employee employee(int id);

String parsedCell(int x, int y);

Pay attention to that last method, parsedCell(). It’s not just

a noun, but a noun with an adjective in front of it. That

doesn’t change the principle; it only makes the name more

descriptive. It’s still a noun, but with more information about

it. It’s not just a cell, but a parsed cell. We should probably

expect this method to return a cell that has transformed its

contents somehow.

A method that makes modifications to the real-world entity

being abstracted by the object, I call a manipulator. It always

returns void, and its names are always verbs. For example:

void save(String content);

void put(String key, Float value);

void remove(Employee emp);

void quicklyPrint(int id);

46

These seven pages are from “Elegant Objects” book by Yegor Bugayenko, find it on Amazon.com



Pay attention to the last method, quicklyPrint(). It’s a verb

with an adverb in front of it. The key element here is the verb

“print”, while “quickly” just explains it, giving us more

information about the context and the purpose of the method.

Again, I made these builder and manipulator names up just for

the sake of this chapter. You may call them something else, but

try to keep this principle intact: Builders build and

manipulators manipulate. And there is nothing in between.

There should not be any methods that manipulate and return

something, nor build and manipulate at the same time. Let me

give a few bad examples:

// returns total bytes saved

int save(String content);

// returns TRUE if map was modified

boolean put(String key, Float value);

// saves speed and returns previous value

float speed(float val);

We’ll discuss “setters” and “getters” later, in Section 3.5, but

here it’s already obvious that names that start with get are

just wrong. That’s because “get” is a verb but getters are

basically builders, since they are supposed to return something.

So, this is my first argument against “getters”.

Now, I think I owe you an explanation for this idea. There are a

few arguments in its favor.

2.4.1 Builders are nouns

First, I believe that it’s wrong to name a method as a verb if it

returns something. Such a name runs against the idea of object

47



thinking. When I stop in at a bakery, I don’t say “cook me a

brownie” or “brew me a cup of co↵ee”. I’d say, “I’d like a

brownie” or “I’d like to have a cup of co↵ee”. If I said “cook

me” or “brew me” something, it would sound rather o↵ensive. I

should not care how exactly that brownie is made or that cup of

co↵ee is brewed. It’s their business how to make them. I have

demand for an object — a brownie or a cup of co↵ee. They can

satisfy my demand. How exactly this happens inside the bakery

is none of my business. Here is the bakery:

class Bakery {

Food cookBrownie();

Drink brewCupOfCoffee(String flavor);

}

These two methods are not actually methods of an object.

They are procedures. Their naming tells us that we ought to

pay no respect to the bakery as a self-su�cient and

self-managed object, and just tell it what to do for us. This is a

procedural approach, not an object-oriented one. This is how

these two procedures would be designed in C, for example:

Food* cook_brownie() {

// cook that brownie

// and return it

}

Drink* brew_cup_of_coffee(char* flavor) {

// brew a cup of coffee

// and return it

}

There is no bakery involved. We just have two pieces of

machine instructions in C syntax, and we call them. We call

48



them functions in C, but they are actually procedures because

they have very little to do with functional programming as well.

We ask the computer to run those instructions for us and

return the result. We are thinking like a computer, not like an

object. We don’t trust the bakery, so we tell it to “go and brew

the damn co↵ee” instead of asking for a cup of co↵ee with a

certain flavor and then just entrusting the establishment with

the result, no matter what it is.

I don’t want to sound too philosophical, but this naming

subject is indeed very abstract and conceptual. A properly

named method helps its users better understand what the

object is designed for, what his mission is, what the purpose of

his existence is, and what the meaning of life is for him, while

an improper method name may ruin the entire idea of an object

and encourage its users to treat him as a bag of data and a

collection of procedures. It’s a very typical mistake that is

repeatedly made by OOP libraries, SDKs, APIs, etc. An object

is a living organism who knows how to perform his duties and

wants to be respected. He wants to work by the contract, not

just follow instructions. There is a big di↵erence.

That’s why, when the name of the method is a verb, it’s

basically telling the object “what to do”. And asking an object

to “build” something is not a polite and respectful way to work

with him. Just request what you need built, and let him decide

how to build it. All of these names are wrong:

InputStream load(URL url);

String read(File file);

int add(int x, int y);

They should be replaced with:

49



InputStream stream(URL url);

String content(File file);

int sum(int x, int y);

Pay attention to the fact that instead of add(x,y), I’m

suggesting you use sum(x,y). It may look like a small and

unimportant change, but it really makes a big di↵erence in your

thinking. We don’t ask our object to add x to y. Instead, we

ask him to produce the sum of the two and return a new object.

Will he really find the sum? I don’t know. Maybe. All I know

is that the result will look like the sum of x and y. Again, I’m

not telling my object what to do, I’m just asking for a result

that must obey a certain contract — be an integer number.

This is the first argument and the first use case. We are getting

something from an object, or in other words, asking an object

to build something for us. Now, let’s discuss the second

argument and the second use case, when we ask the object to

do some manipulation for us.

2.4.2 Manipulators are verbs

As you remember, an object is a representative of a real-world

entity. An object of class File represents a file on disk, an

object of class Pixel represents a pixel on the screen, and an

instance of class Integer represents four bytes of RAM

(Surprised? We’ll discuss that in detail in Section 3.4).

When we need to manipulate a real-world entity, we ask the

object to do it for us. For example:

50



class Pixel {

void paint(Color color);

}

Pixel center = new Pixel(50, 50);

center.paint(new Color("red"));

We ask object center to paint a pixel on the screen, located at

the 50x50 coordinates. We don’t expect anything to be built;

we just want to make a modification to the world, and the

object is a representative of it for us. Now, you may ask how

this is not a procedure. It is named as a verb, and it basically

directs an object to do something for us. Yes, it’s a valid

question, but the key di↵erence is the result returned.

The method paint() doesn’t return a result. Using the same

bakery metaphor, this is similar to asking a bartender to turn

up the music. Will she make it louder? Maybe she will. Maybe

not. Our request may just be ignored. It’s never o↵ensive or

disrespectful, because we are not expecting anything back.

Imagine how this would sound otherwise — “Please turn up the

music and tell me its volume level when you’re done”. That’s

exactly how a manipulator that returns a value looks. Very

disrespectful.

Thus, the di↵erence is in the return value. Only a builder is

allowed to return a value, and its name must be a noun. When

an object allows us to manipulate, the name has to be a verb,

and there must be no return value.

I think it’s possible to follow a less strict naming convention,

provided you keep the main principle in mind. For example,

when using a Builder Pattern, you can start method names

with a with prefix:

51



class Book {

Book withAuthor(String author);

Book withTitle(String title);

Book withPage(Page page);

}

Here, the name withTitle is just a short form of

bookWithTitle. In order to avoid this book prefix in all

methods, we can use just the with prefix. But the principle is

still in place — these methods are builders, and their names are

classified as nouns.

52


