
February 2010 30 www.phparch.com

FEATURE

FaZend:
Object Relational
Mapping

REQUIREMENTS

PHP: 5.2+

Other Software:
• MySQL 5.0+
• FaZend http://code.google.com/p/fazend/
• Zend Framework 1.10+

Related URLs:
• Zend Framework: http://framework.zend.com/
• FaZend: http://www.fazend.com/

Yegor Bugayenkoby

FaZend is an open-source PHP framework and a continuous
integration environment, which simplifies the development and
maintenance of your web applications. FaZend is based on Zend
Framework. Being one of the most powerful PHP frameworks,
Zend Framework is very flexible and abstract. Very often, this
flexibility leads to complexity in developed applications. This
article explains how FaZend overcomes this drawback and makes
the management of persistent data both fast and easy.

http://code.google.com/p/fazend/
http://framework.zend.com/
http://www.fazend.com/

February 2010 31 www.phparch.com

FaZend: Object Relational Mapping

What is FaZend? An Environment or a
Framework?
Recent studies of the industry indicate that the fail-
ure rate of software development projects is grow-
ing, and in general, “software quality is not improv-
ing but getting worse” [Cerpa09]. Some reports say
that up to 85 percent of projects fail to reach their
objectives [Jorgensen06]. Despite all efforts, these
are sad statistics. One of the most critical factors
of project success is complexity of source code. The
higher the complexity, the higher the risk of project
failure.

One of the best way to decrease source code com-
plexity is to use architecture layers [POSA08, pp.31-
51], which isolate components and let us work with
their public interfaces. Well-known best practices of
layering include functions, classes, and also sets of
classes called “libraries” and “frameworks”.

Zend Framework is one of the most developed and
powerful PHP frameworks available in the market
now, and it “provides loose coupling between com-
ponents” [OPhinney09]. FaZend Framework (“Fully
Automated Zend”) was designed and developed in
order to move forward with decreasing code com-
plexity. This product is just another layer on top
of Zend Framework, and it gives web applications a
limited set of the most useful components with ex-
tremely simplified interfaces.

Besides being an additional abstraction layer on
top of Zend Framework, FaZend is a continuous in-
tegration environment, which automates building,
maintenance, testing and defect tracking of PHP

products.
A little background on FaZend: The development

of FaZend Framework was started in May 2009.
According to ohloh.com, there are over 13K lines of
code in the framework and over 10K in the server
components. The open-source framework is hosted
at Google Code SVN repository. To date, there are
38 projects managed by FaZend continuous integra-
tion environment. Hardware resources are provided
by RackSpace.com, HostGator.com and WebFaction.
com. The environment is powered by third-party
open-source tools: PHP, Apache, MySQL, phpDocu-
mentor, xdebug, Phing, PHPUnit, PHP_CodeSniffer,
PHP_Beautifier, PHP_Depend, Trac, Subversion,
CruiseControl and phpUnderControl.

This article is dedicated to one of the core mecha-
nisms inside the open-source FaZend Framework —
the object-relational mapping component — which
is developed on top of the Zend_Db set of classes.

How Zend_Db Manages Persistent Data
Zend Framework gives you a powerful mechanism of
database layer abstraction, by means of Zend_Db_*
classes. There are many articles about its usage,
with examples and details available in both the Zend
Framework tutorials and in the developers’ blogs.
In a nutshell, to manage your persistent data with
Zend_Db, you need to do the following (see Listing 1):

• Configure a default adapter in your
Bootstrap.php

• Declare classes which extend Zend_Db_Table

• Instantiate one of the declared classes
• Execute an SQL query, fetch a row or a “row

set”
• Retrieve data

The SQL query could be prepared beforehand as an
instance of class Zend_Db_Select, which is another
abstraction on top of SQL. In Listing 1, the variable
$query is a good example.

Compared with the direct access to PDO methods,
such an approach gives you a number of benefits,
including loose coupling and higher maintainability.

In formal terms:

• Zend_Db_Table implements “Table Data
Gateway” pattern

• Zend_Db_Table_Row implements “Row Data
Gateway” pattern

• Zend_Db_Table_Rowset implements “Record Set”
pattern [Fowler08]

However, there is still a lack of “Data Access Object
(DAO)” pattern implementation, which would enable
true Object-Relational Mapping (ORM). To extend
the snippet above with ORM, it would be nice to use
such code:

$name = $product->person->name;

With Zend_Db, you can’t do this that quickly and sim-
ply, but you should manually
retrieve data from tables and execute new queries,
for example:

http://www.php.net/$query

February 2010 32 www.phparch.com

FaZend: Object Relational Mapping

$personId = $product->person;
$personTable = new Model_Person();
$query = $personTable->select()
 ->where('id = ?', $personId);
$name = $personTable->fetchRow($query)->name;

Obviously, the complexity of this code is much
higher (remember the failure rate of 85 percent!)
than the one-line call above. On the other hand, co-
hesion of this code is also much weaker, since there
is no explicit grouping of the five code lines above.
Sooner or later, a new member of your software team
may decide to re-factor this code and one of the
lines may be lost. If this happens, it will be extreme-
ly difficult to understand which one it was and what
it contained.

There are a number of proposals being discussed in
the Zend Framework wiki about possible ORM imple-
mentation on top of Zend_Db, however, none of them
have been approved by the Zend Framework team so
far.

Existing ORM Tools and Frameworks in PHP
There are a few popular frameworks and libraries
that enable DAO pattern in PHP, including Doctrine
[McNulty09], Propel [Godoy08], Torpor, Qcodo and
others. However, none of them are based on Zend_Db,
and their integration with Zend Framework is rather
complex (and will lead to code complexity).

Another big disadvantage of all said libraries is
the necessity to duplicate DB schema in PHP code.
Sometimes, this process is automated with re-engi-
neering tools that grab DB schema from the server
(or from its declaration files in XML, YAML, SQL,

etc.) and generate PHP code that declares classes
and methods for ORM calls. Needless to say, overall
code complexity of the entire product grows ex-
tremely fast when you inject auto-generated code
into it.

On the other hand, the vast majority of web appli-
cations do not have complex DB schemas and don’t
need most of the instruments provided by the ORM
libraries.

How FaZend Makes it Easy and Fast
FaZend Framework offers a simple, fast and easy ORM
mechanism without DB schema duplication inside
PHP code and without static DB re-engineering.
This mechanism is not going to replace all possible
persistent data management use cases, but it will be
suitable for the majority of situations.

FaZend Framework implements ORM by means of
on-fly declaration of DAO classes and discovery of
database schemas, i.e.:

class Model_Product
 extends FaZend_Db_Table_ActiveRow_product
{
 // ...
}

As you see in the snippet above, class
FaZend_Db_Table_ActiveRow_product is not a real class,
but a stub in order to catch this extension call by
a dynamic class loader. When you declare class
Model_Product this way, the PHP class loading mecha-
nism sends a request to FaZend loader, asking it to
declare a class. FaZend Framework makes a request

to the database table product and retrieves all in-
formation required, by means of a DESCRIBE p̀roduct̀
call. Thus, you don’t need to declare explicitly the
name of the table in the class, as was done in the
snippet with Zend_Db in Listing 1.

Now, you implicitly tell FaZend whether our
columns contain plain data values or foreign keys
to other rows in other tables. For example, col-
umn product.name is a plain string value, while
product.person is a foreign key to some row in person
table, identified by a primary key id. By default, it
is assumed that the name of the column is equal to
the name of the referenced table. It is also assumed
that every table has a primary key named id. Having
these two key assumptions in mind, you can do:

$product = new Model_Product(123);
$person = $product->person;
assert($person instanceof Model_Person);

 1. // To configure default adapter
 2. Zend_Db_Table::setDefaultAdapter(
 3. new Zend_Db_Adapter_Pdo_Mysql(
 4. array(
 5. 'host' => '127.0.0.1',
 6. 'username' => 'webuser',
 7. 'password' => 'xxxxxxxx',
 8. 'dbname' => 'test',
 9.)
10.)
11.);
12.
13. // To declare class
14. class Model_Person extends Zend_Db_Table
15. {
16. protected $_name = 'person';
17. protected $_primary = 'id';
18. }
19.
20. // To instantiate the class
21. $personTable = new Model_Person;
22.
23. // To fetch a row
24. $query = $personTable->select()
25. ->where('id = ?', 123)
26. ->orWhere('name LIKE ?', '%John%')
27. $person = $personTable->fetchRow($query);
28.
29. // To retrieve data
30. if (false !== $person) {
31. echo $person->name;
32. }

LISTING 1

February 2010 33 www.phparch.com

FaZend: Object Relational Mapping

Record set retrieval is also simplified in order to
avoid instantiation of table class, i.e.:

$products = Model_Product::retrieve()
 ->where('price > ?', 500)
 ->setRowClass('Model_Product')
 ->fetchAll();
foreach ($products as $product) {
 assert($product->person instanceof Model_Person);
}

Another instrument is explicit class mapping. For
example, you have a column person.dob, which is of
type DATE and contains date of birth of the desig-
nated person. This is what you do:

FaZend_Db_Table_ActiveRow::addMapping(
 '/̂ person\.dob$/',
 'Zend_Date'
);
$product = new Model_Product(123);
assert($product->person->dob instanceof Zend_Date);

With a simple call to addMapping() method, you in-
struct FaZend Framework to convert everything it
gets from person.dob column to Zend_Date.

A Few Real-Life Examples
Here is a real-life example of a DAO class, with
comments for each method. This example is going
to give the best explanation of ORM mechanism in
FaZend. Consider the DB schema in Listing 2 where
MySQL 5.0 is used in the example.

Two entity classes are declared in Listing 3 (class
Model_Person) and Listing 4 (class Model_Product).
A simple view is in Listing 5. “Document View”

pattern is used in the example, instead of “Model
View Controller”, for the sake of simplicity [POSA08,
p.140]. Further, we explain, step-by-step, every class
and method from said Listings.

Model_Person in Listing 3 extends class
FaZend_Db_Table_ActiveRow_person, and this class is cre-
ated on-the-fly, using the suffix of the name provid-
ed: person. This suffix is the exact name of the data-
base table to use. The class implements the “Active
Row” design pattern, representing a single row from
the table in PHP code scope. Static calls to this class
shall remind you of the well-known “Factory” design
pattern, since they allow you to create or retrieve
instances of the “row” class.

Model_Person::create() is a factory method that
creates an instance of the row and returns it. Pay
attention that type hinting is used for incoming

 1. CREATE TABLE IF NOT EXISTS p̀ersoǹ
 2. (
 3. `id` INT NOT NULL AUTO_INCREMENT
 4. COMMENT "Unique ID of the person",
 5. ǹamè VARCHAR(120) NOT NULL COMMENT
 6. "Full name of the person",
 7. `dob` DATE COMMENT
 8. "Date of birth",
 9. PRIMARY KEY(`id`)
10.)
11. AUTO_INCREMENT=1
12. ENGINE=InnoDB
13. COMMENT="A human being, potential product owner";
14.
15. CREATE TABLE IF NOT EXISTS p̀roduct̀
16. (
17. `id` INT NOT NULL AUTO_INCREMENT
18. COMMENT "Unique ID of the product",
19. t̀itlè TEXT NOT NULL COMMENT
20. "Title of the product",
21. p̀ricè INT NOT NULL COMMENT
22. "Price of the product, in USD cents",
23. p̀ersoǹ INT NOT NULL COMMENT
24. "Owner of this product (FK:person.id)",
25. PRIMARY KEY(`id`),
26. FOREIGN KEY(p̀ersoǹ)
27. REFERENCES p̀ersoǹ (`id`)
28. ON UPDATE CASCADE
29. ON DELETE CASCADE
30.)
31. AUTO_INCREMENT=1
32. ENGINE=InnoDB
33. COMMENT="A product under development";

LISTING 2

 1. class Model_Person
 2. extends FaZend_Db_Table_ActiveRow_person
 3. {
 4. public static function create($name, Zend_Date $dob)
 5. {
 6. $person = new self();
 7. $person->name = $name;
 8. $person->dob = $dob->getIso();
 9. $person->save();
10. return $person;
11. }
12.
13. public function __get($name)
14. {
15. $method = '_get' . ucfirst($name);
16. if (method_exists($this, $method))
17. return $this->$method();
18. return parent::__get($name);
19. }
20.
21. protected function _getProducts()
22. {
23. return Model_Product::retrieveByPerson($this);
24. }
25.
26. protected function _getAge()
27. {
28. return Zend_Date::now()->sub($this->dob)->getYear();
29. }
30. }

LISTING 3

 1. class Model_Product
 2. extends FaZend_Db_Table_ActiveRow_product
 3. {
 4. public static function create(
 5. Model_Person $person,
 6. FaZend_Bo_Money $price,
 7. $title)
 8. {
 9. $product = new self();
10. $product->title = $title;
11. $product->price = $price->cents;
12. $product->person = $person;
13. $product->save();
14. return $product;
15. }
16.
17. public static function retrieveByPerson(
18. Model_Person $person)
19. {
20. return self::retrieve()
21. ->where('person = ?', strval($person))
22. ->setRowClass('Model_Product')
23. ->fetchAll();
24. }
25. }

LISTING 4

http://www.php.net/DATE

February 2010 34 www.phparch.com

FaZend: Object Relational Mapping

parameters, where possible. It is good practice to
make it the responsibility of a caller to validate
parameters and do the necessary type casting.
Similarly, it is good practice to instantiate “gate-
way” classes by means of the factory method, in-
stead of their constructor. Model_Person is a gateway
between persistent data in the database and their
PHP users. Instantiation of such a gateway by means
of its constructor will lead to a concurrency problem,
when two gateways work with the same DB row.

Model_Person::__get() is a magic PHP5 method
that dispatches property access attempts, hiding in-
ternal logic of the class behind an object interface.
The method enables two properties in the class,
implementing them by means of methods:

assert($this->products === $this->_getProducts());
assert($this->age === $this->_getAge());

Notice, that _getAge() and _getProducts() are declared
as protected methods. This declaration will disallow
callers to access them directly.

Model_Person::_getAge() calculates the age of
the person in years. Since person.dob is automatically
converted to Zend_Date, the calculation of the age is
done with just one straight call.

The class Model_Product class in Listing 4 uses
similar declaration notation, but the suffix after
FaZend_Db_Table_ActiveRow_ is changed to product in
order to instruct FaZend Framework that this class
should represent table product.

Model_Product::retrieveByPerson() is a static
factory method that returns a set of rows (in-
stance of class Zend_Db_Table_Rowset), where each

row is an instance of class Model_Product. Method
self::retrieve() is a generator of a wrapper around
two classes: Zend_Db_Table and Zend_Db_Select. In order
to simplify operations with them, the wrapper catch-
es your calls and dispatches them as required. Some
of them go to Zend_Db_Table, like fetchAll(), fetchRow(),
delete(), etc., while others go to Zend_Db_Select, like
where(), order(), etc.

Pay attention to the setRowClass() call, which
instructs the wrapper to do type casting of the re-
trieved data to the class specified. This is required
in PHP 5.2, where the name of the class-caller is not
available for static methods. In PHP 5.3, you may
skip this explicit instruction, as FaZend Framework
will understand who is calling the retrieve() method
and will perform necessary type casting automati-
cally. However, this call may be useful if you retrieve
rows from a VIEW rather than a TABLE and you need
to specify explicit type casting. In such a case, you
may even need to change the name of the table
you’re working with. For example:

echo self::retrieve(false)
 ->from('person', array('id', 'name'))
 ->join('product', 'product.person = person.id',
 array('volume' => new Zend_Db_Expr('SUM(product.
price)'))
 ->group('person.id')
 ->order('volume DESC');

In this example, retrieve(false) means that we
should not use the current table in the FROM SQL
statement, but wait for from() to specify the table
explicitly, whereby we also can list columns that
we need to see in the query result set. They are
id and title in the example above. The statement

above will produce the following SQL query (you
noticed already that there is no fetchAll() or simi-
lar call, but rather an echo() method on the en-
tire wrapper object, which will go directly to
Zend_Db_Select::__toString() and will return a string
comprising the SQL query):

"SELECT id, name, SUM(product.price) AS volume
FROM person
JOIN product ON product.person = person.id
GROUP BY person.id
ORDER BY volume DESC"

Here is another example that explains how dynamic
binding could be used more extensively than before:

return Model_Person::retrieve()
 ->where('dob BETWEEN :start AND :end')
 ->setRowClass('Model_Person')
 ->fetchAll(array(
 'start' => Zend_Date::now()->subYear(25)->getIso(),
 'end' => Zend_Date::now()->subYear(18)->getIso()));

Such a dynamic binding is a powerful mechanism
when you need to pass many variables into your SQL
statement, but the where() method cannot accept
more than one parameter.

Updates and deletes are performed with the same
one-call “fluent interface” syntax. For example, this
call will delete all rows in the product table which are
cheaper than $price:

 1. $person = new Model_Person((int)$this->param('id'));
 2.
 3. <h1>Customer #<?=$person?>:
 4. <?=$this->escape($person->name)?>
 5. (<?=$person->age?> y.o.)</h1>
 6.
 7. <p><?=count($person->products)?> product(s)
 8. are in production for the customer:</p>
 9.
10. <? foreach ($person->products as $product): ?>
11. <p>#<?=$product?>:
12. <?=$this->escape($product->title)?>,
13. <?=$product->price?></p>
14. <? endforeach; ?>

LISTING 5

http://www.php.net/echo()

February 2010 35 www.phparch.com

FaZend: Object Relational Mapping

Model_Product::retrieve()
 ->where('price < ?', $price)
 ->delete();

Another example, below, will rename all person re-
cords that have any product records, converting their
names
to upper case:

Model_Product::retrieve()
 ->join('product', 'product.person = person.id')
 ->update(array(
 'name' => new Zend_Db_Expr('UPPER(name)')));

The view script in Listing 5 demonstrates how speci-
fied classes may interact and how easily this inter-
action can be managed. It is important to mention
that FaZend Framework will encourage you to avoid
direct manipulation with row ids. When you will try
to access an id column of an object, you will get a
warning that this is a prohibited manipulation prac-
tice. When, and if, you need to get an id of the row,
just convert the object to STRING like it is done in the
view script:

<?=$person ?>

You may have noticed that nowhere in the code
was the id column used. This is done intentionally
in order to encourage programmers to use object-
oriented concepts, instead of thinking in terms of
rows, columns and tables. When you have an object
($person for example), you should forget that this is
an interface to a DB row. You should work with it
like you would with an object — getting properties
from it, setting properties and calling methods. If
you’re trying to access id, it means that you’re con-
cerned about the implementation of a storage of this
object, and this is an explicit sign of invalid design.

Cost-Benefit Analysis and Further Plans
There are a number of drawbacks in the proposed
ORM mechanism, such as the inability to work with
multiple databases at the same time (since the de-
fault DB adapter is always used) and the inability
to work with tables/views without a single-column
primary key. But there is, in my opinion, one strong
benefit, lower code complexity and as a result, bet-
ter maintainability of a software product. Hopefully,
this simplicity will lead to a decreased failure rate of
software development projects (at least those devel-
oped by the readers of php|architect!).

Further development of the ORM inside FaZend
Framework will include stronger query optimiza-
tion and integration with Zend_Cache. The project is
open-source, and we encourage developers to join
our team. For more information, e-mail us at team@
fazend.com.

References
[Cerpa09] Narciso Cerpa et al., Why Did Your Project
Fail? Communications of the ACM, vol.52, no.12,
Dec 2009.

[Fowler08] M. Fowler et al., Patterns of Enterprise
Application Architecture, Pearson 2008.

[Godoy08] A. V. Godoy, The Propel ORM,
php|architect, vol. 7, issue 70, Oct 2008.

[Jorgensen06] M. Jorgensen et al., How large are
software cost overruns? A review of the 1994 CHAOS
report, Information and Software Technology, vol.
48, 2006.

[McNulty09] C. McNulty, A Tour of the Doctrine ORM,
php|architect, vol. 8, issue 8, Aug 2009.

[OPhinney09] M. W. O'Phinney, Zend Framework,
php|architect, vol. 8, issue 6, June 2009.

[POSA08] F. Buschmann et al., Pattern Oriented
Software Architecture, A System of Patterns, Volume
1, Wiley 2008.

YEGOR BUGAYENKO is the lead architect of FaZend Framework
and a proud holder of ZCE, ZFCE and PMP certificates. He

is also the director and co-founder of TechnoPark Corp.,
a custom software development company specializing in
complex and distributed web applications.

Such a dynamic
binding is
a powerful
mechanism when
you need to pass
many variables
into your SQL
statement.

team@fazend.com
team@fazend.com

