
Quality of Code Can Be Planned and Automatically Controlled

Yegor Bugayenko
TechnoPark Corp.

568 Ninth Street South, 202
Naples, Florida, 34102, USA

yegor@tpc2.com

Abstract

Quality of Code is an important and critical health
indicator of any software development project. However,
due to the complexity and ambiguousness of calculating
this indicator it is rarely used in commercial contracts. As
programmers are much more motivated with respect to the
delivery of functionality than quality of code beneath it,
they often produce low-quality code, which leads to post-
delivery and maintenance problems. The proposed mecha-
nism eliminates this lack of attention to Quality of Code. The
results achieved after the implementation of the mechanism
are more motivated programmers, higher project sponsor
confidence and a predicted Quality of Code.

Keywords. quality metrics, code quality, code coverage,
cyclomatic complexity, continuous integration.

1. Introduction

Quality of Code (QoC) is a measure of compliance of
a set of source code constructs to pre-defined design and
coding rules [4], [15]. Quality of Product is a measure of
compliance of a product functionality to a specification [5],
[6]. Both qualities are calculated as a relation between
the number of defective elements and the total number of
elements.

Quality of Product is a visible characteristic of any
software system, while QoC is hidden and may become
visible much later after the system is deployed and the
project is finished [8]. However, the negative consequences
of low QoC are much higher [17].

There are numerous standards [5], [6] and informal ap-
proaches to quality-of-product calculation, and all of them
lead to these two clear and effective metrics: “bugs fixed
to bugs found” and “functional requirements accepted to
functional requirements specified” [6]. The majority of
software development contracts, either fixed-price or cost-
reimbursement, oblige software developers to deliver the
product with a highly measured quality-of-product.

Quality-of-code still remains a “nice toolkit” in most soft-
ware crews, used for programmers’ self-analysis and self-
improvement. Many projects keep this criticaly important

metric out of the project sponsor’s control and unbound by
a contract. As a result, the project sponsor cannot impact the
QoC in their product and can merely rely on programmers’
professional skills and their willingness to produce a quality
code.

There is a strong necessity to have a simple and trans-
parent mechanism that will interconnect a) programmers,
b) code, c) QoC, and d) project sponsors. The mechanism
proposed in the article motivates programmers to produce a
quality code without any special reminders from the project
sponsor.

2. Automated Control Method Overview

The mechanism ties programmers’ motivation to a set of
objective QoC metrics, at the same time giving the same
metrics to the project sponsor. Figure 2 shows that program-
mers commit their source code changes to the SVN [23]
repository and get back regular rewards for the quality of
their code. Rewards are based on the QoC metrics, calculated
by the project management software (thePanel1). The project
sponsor receives the same metrics.

The components behind the dotted line are hidden from
both programmers and the project sponsor, and work auto-
matically at each cycle of continuous integration [3].

Continuum [1] starts a new cycle regularly, triggered by
new changes in the SVN repository. Maven2 [13] compiles
the code, executes unit tests, and starts a static code analyzer.
The JUnit-like unit testing framework [9] and the static code
analyzer produce their reports in XML files. A server-side
parser and transmitter (Gist1) collects such XML reports,
solicits QoC metrics, and sends them to thePanel.

Before the implementation of the mechanism, the project
sponsor, in order to get information about the QoC, had to
login directly into the static code analyzer web site, or even
worse, into XML reports of such an analyzer. Moreover, in
order to provide a feedback to programmers about low QoC
the project sponsor had to give direct orders about certain
metrics or certain modules. Such a process was very time-
consuming and ineffective.

1. thePanel and Gist are proprietary software products developed in
TechnoPark Corp. for automation of the mechanism described in the article.



Continuum

SVN thePanel

Maven2

metrics

Gist

Programmers Sponsor

commit

check out xml

rewards metrics

Figure 1. Endless cycle between programmers, QoC metrics, project sponsor and regular rewards given to
programmers automatically by the project management software.

After the implementation of the mechanism, with au-
tomatic QoC metrics collection and bonus generation, the
project sponsor no longer touches the code or reviews any
reports from programmers. All that the sponsor receives is
a small set of metrics. The sponsor rests assured that the
metrics received influence the motivation of programmers.

3. Project Management Perspective

The proposed QoC metrics and the mechanism of their
calculation from a PMBOK [18] perspective is shown in Fig-
ure 3 The mechanism could also be mapped to other project
management, quality assurance, and software development
standards such as CMMI [2], ISO-9001 [7], PRINCE2 [19],
Rational Unified Process [20], etc.

Process “4.1 Develop Project Charter” The Project
Charter and the Contract shall formally specify the list
of QoC metrics and their required values. Code coverage
and cyclomatic complexity [14] are the two most valuable
metrics. Code coverage is measured in percentage of code
constructs covered by unit tests, and it should be high.
Cyclomatic complexity is an average complexity of source
code, according to McCabe’s formula [14], and it should be
low. Other metrics could be used as well [10], [11], [16],
[24].

Process “8.1 Plan Quality” During quality planning,
the project manager and the project team shall identify the

tools which are to be used for metrics collection [22]. In
the proposed method, they are: SVN, Continuum, Maven2,
JUnit, static code analyzer, Gist, thePanel. “Plan Quality”
process also must identify accepted values of QoC metrics
and baseline them in the Quality Management Plan.

• Version Control System — Subversion, ClearCase, Ac-
cuRev, CVS, StarTeam, Team Foundation Server, etc.

• Continuous Integrator — the software that regularly
checks the status of source code in the repository
and starts integration cycle when it’s necessary (some-
times triggered by a user request): Apache Continuum,
CruiseControl, TeamCity, Team Foundation Server,
Xinc, etc.

• Builder — the software that performs routine syntax
check, compilation, static library binding, unit testing
and deployment in fully automated mode, without pro-
grammers attention: Maven2, Phing, MSBuild, Apache
Ant, GNU make, etc.

• Testing Framework — the collection of software com-
ponents that empowers the unit-testing process and
generates code coverage XML reports after the testing
is complete (of failed). There are many JUnit-like
frameworks, while there are many other families of
such instruments [25].

• Static Code Analyzer — the configurable utility that
performs the analysis of the source code and produces
different metrics about the results obtained. For differ-



Knowledge
Area

Project Management Process Groups
Intiating
Process Group

Planning
Process Group

Executing
Process Group

Monitoring &
Controlling
Process Group

Closing
Process Group

4. Project
Integration
Management

4.1 Develop
Project
Charter

5. Project
Scope
Management

5.4 Verify
Scope

6. Project Time
Management
7. Project Cost
Management
8. Project
Quality
Management

8.1 Plan
Quality

8.2 Perform
Quality
Assurance

8.3 Perform
Quality
Control

9. Project
Human
Resource
Management

9.3 Develop
Project Team

10. Project
Communica-
tions
Management

10.5 Report
Performance

11. Project
Risk
Management
12. Project
Procurement
Management

12.1 Plan
Procurements

Figure 2. PMBOK perspective of the described mechanism

ent languages and technologies the project team shall
select appropriate tools, and configure them properly.

• Metrics Collector — the software module that is em-
bedded into the build scenario. It should parse the
XML results of the Testing Framework and the Static
Code Analyzer and generate a summary report, which
is suitable for the Project Management Software. We
didn’t find any tools available on the market for such
purpose, and developed one (Gist).

• Project Management Software — the system that auto-
mates project management processes and simplifies the
access to project management artifacts for all members
of the project team. It is important to enable the
processing of XML reports from the Metrics Collector
by such a Project Management Software. The former
shall be responsible for the translation of metrics into
bonuses for programmers and reports for the project
sponsor.

Process “4.1 Plan Procurements” As QoC requirements
will be in the Contract, the project manager shall translate
them to future sellers. The requirements shall be embedded
into the procurement document packages.

The procurement documentation shall be written in a way
that oblige sellers to deliver results with the required QoC.

For some sellers (or most of them) such a requirement will
sound strange since they do not have an institualized process
of QoC control and prediction. However the project manager
shall play a role of a trainer, if necessary, for such sellers.

Process “8.2 Perform Quality Assurance” An estab-
lished mechanism of QoC metrics collection doesn’t guaran-
tee that problems won’t come up during the whole project.
Static code analyzers and testing frameworks become the
measurement instruments for the project and shall be vali-
dated for correctness regularly.

Such quality audits should be performed by technical
and management engineers together. Technical auditors shall
validate the stability of used tools, review log files, update
versions, etc. Management auditors shall validate whether
the whole mechanism works as planned, whether the re-
wards really affect programmers motivation, and whether
the project sponsor understands the value of the metrics
regularly received.

Quality audit shall also check whether the QoC metrics
are calculated on the whole set of source code files. It is
a very common defect in such a process, when the QoC is
analyzed using only a very limited set of source code files,
for example in just one programming language. This defect
shall be found by quality audit and removed immediately.



Process “9.3 Develop Project Team” The rewards pro-
duced by the project management system shall become a
valuable part of project ground rules. All programmers shall
understand and accept the rules. The best approach is a
positive motivation delivered through regular trainings and
monetary awards.

Process “5.4 Verify Scope” The project manager together
with the programmers shall agree that the deliverables are
accepted only when the QoC is acceptable according to the
values baselined during the “Plan Quality” process.

Having such an agreement the project manager simplifies
the task of keeping the QoC high enough. Moreover, only
with such iterative approach to QoC control it is possible to
receive source code with predicted quality.

Process “8.3 Perform Quality Control” Using different
tools for QoC analysis and control (e.g., control charts,
Pareto charts, or run charts) the project manager shall
regularly monitor the metrics and initiate corrective actions:
(in order of severity and simlicity):

• Review Motivation Policy — the easiest method that the
project manager can perform, and the most effective.
The vast majority of problems with performers come
from defects in their motivation. The project manager
shall review the ground rules in the project, discuss
them with programmers and come to a situation when
everybody are highly motivated to get the rewards,
which the motivation policy promised to give.

• Quality Audit of Measurement Tools — maybe the
instruments that validate QoC are not as effective as
they should be, due to the defects in their installation
configuration.

• Education Trainings — they usually help when the
programmers are motivated, but don’t have enough
knowledge to improve QoC.

• Change Programmers — the least effective for the
project and the most severe for the project team cor-
rective action. Should be implemented only when all
other corrections were implemented and didn’t give a
result.

Process “10.5 Report Performance” The project sponsor
shall receive simple analysis of the QoC inside their regular
project performance reports. It is very important to keep such
analysis detail-free and non-technical. The report should not
tell the sponsor about why the quality is low or where the
code is not good. Such details should be omited. The report
shall clearly indicate whether the QoC is within acceptable
boundaries or not.

4. Experimental Application

The method was applied to five commercial projects
completed by TechnoPark Corp. during 2008-2009. All of
them were implemented by distributed teams, see Figure 4.

Every team included 3–5 programmers working in a full-
time engagement model, and over 10 part-time project
participants such as like testers, designers, architects, etc.

Every team was using this method of quality assessment
for the first time, and none of them were prepared or trained
for it. Project sponsors (customers) were informed about
the application of this model, and contracts were relatively
altered to indicate the responsibility of project teams for the
QoC.

We discovered that the motivation of programmers for
higher QoC metrics in every project increased from the
beginning. The rewards planned to be given in every project
were not delivered in full to programmers; however, more
than a half of them reached programmers’ pockets.

Important observations showed that the post-delivery de-
fects rate, which is a relation between the number of defects
discovered during the 12 months after project completion to
the number of defects discovered by the project, was much
lower in projects with higher QoC (projects C and D). At
the same time, lower QoC became a clear indicator of higher
post-delivery defects rate (project B).

There was a cost of infrastructure involved, which in-
cluded the amount of time in staff-hours spent for tools
installation, support, and initial education of programmers.
This cost was budgeted as part of project cost, and was
different from one project to another. There is a strong
dependency between the resources spent for the infras-
tructure organization and the effectiveness of the whole
concept. Project B spent the smallest amount of time for the
infrasructure, mostly because it involved more professional
programmers. They claimed that they did not need to learn
such a system and that they could control quality of code
themselves. The numbers show that this assumption was
incorrect.

After project completion, project sponsors were inter-
viewed by the quality director of TechnoPark Corp. The
feedback collected was analyzed in order to produce the
overall rating. There were three questions asked in the
interview (in order of importance for the overall rating):

• “Did you receive the expected quality of product?”
• “Are you going to come back with your next project?”
• “Was the project completed on time and in budget?”
It was found that QoC has a strong impact on quality of

product and overall customer satisfaction, even in situations
when the customer does not understand the important of
QoC directly.

5. Conclusion and Future Work

The mechanism was successfully implemented in
TechnoPark Corp. in a number of industry projects. The
benefits received so far are:

• Programmers’ motivation for better code was signifi-
cantly increased;



A B C D E
Project cost, staff-hours 1400 2150 2900 1850 2300
Project duration, weeks 15 23 29 22 28
Programmers 4 5 5 3 4
Environment, platform PHP, MySQL,

Phing, Xinc
J2EE, Oracle,
Maven2, Continuum

Metrics used Q1 ∈ [0; 100%]: Code coverage, by lines of code;
Q2 ∈ [1;∞): Average code complexity of a class
method, McCabe

Rewarding policy 5hrs every week 7hrs bi-weekly
Rewards calculation formula Q1 > 80%

∧
Q2 < 7

Rewards given
(portion of total capacity)

63hrs
(84%)

39hrs
(34%)

127hrs
(88%)

70hrs
(91%)

74hrs
(76%)

Post-delivery defects rate
(cost of defect removal)

7%
55hrs

30%
440hrs

4%
80hrs

6.5%
35hrs

unknown
40hrs+

Cost of infrastructure 40hrs 10hrs 90hrs 35hrs 50hrs+
Customer feedback good+ average- excellent good unknown

Figure 3. Experimental results obtained after the QoC method application for five industry software projects

• Project sponsors’ involvement into project affairs be-
came much higher;

• Level of post-delivery errors was twice as low;
• Customer confidence of quality was significantly im-

proved.
Future research will answer the following question: Is it

possible to produce QoC predictions for the current project
using the information from other projects? How can the QoC
automated analysis be integrated with risk management pro-
cess? Can the risk identification and analysis be automated
using the automated quality metrics?

References

[1] The Apache Software Foundation:
http://continuum.apache.org.

[2] Software Engineering Institute: CMMI for Development,
Version 1.2, CMU/SEI-2006-TR-008 (2006)

[3] Duvall, P., Matyas, S., Glover, A.: Continuous Integration:
Improving Software Quality and Reducing Risk,
Addison-Wesley Signature Series, USA (2007)

[4] Fenton, N., Pfleeger, S.L.: Software Metrics (2nd ed.), a
rigorous and practical approach, PWS Publishing Co.,
Boston, MA, USA (1997)

[5] IEEE: Standard for Software Test Documentation, IEEE Std
829, USA (1998)

[6] IEEE: Recommended Practice for Software Requirements
Specifications, IEEE Std 830-1998, USA (1998)

[7] ISO: Quality Management Systems, Requiremnts, Third
Edition, ISO/IEC 9001:2000(E), USA (2000)

[8] Jiang, Y., Cuki, B., Menzies, T., Bartlow, N.: Comparing
Design and Code Metrics for Software Quality Prediction,
PROMISE’08: Proceedings of the 4th international
workshop on Predictor models in software engineering, pp.
11–18, Leipzig, Germany (2008)

[9] JUnit: http://www.junit.org/.

[10] Kharb, L., Singh, R.: Complexity Metrics for
Component-oriented Software Systems, SIGSOFT Softw.
Eng. Notes, vol. 33, no. 2, pp. 1–3, USA (2008)

[11] Lincke, R., Lundberg, J., Löwe, W.: Comparing Software
Metrics Tools, ISSTA’08: Proceedings of the 2008
international symposium on Software testing and analysis,
pp. 131–142, Seattle, WA, USA (2008)

[12] Martin, R.: Agile Software Development: Principles,
Patterns, and Practices (2002)

[13] The Apache Software Foundation: http://maven.apache.org.

[14] McCabe, T.J.: A Complexity Measure, ICSE’76:
Proceedings of the 2nd international conference on Software
engineering, p. 407, San Francisco, California, United
States, IEEE Computer Society Press (1976)

[15] McConnell, S.: Code Complete, 2nd Edition, Microsoft
Press, Redmond, WA (2004)

[16] Meyers, T.M., Binkley, D.: An Empirical Study of
Slice-based Cohesion and Coupling Metrics, ACM Trans.
Softw. Eng. Methodol., vol. 17, no. 1, pp. 1–27, ACM, New
York, NY, USA (2007)

[17] Misra, S.C.: Modeling Design/Coding Factors That Drive
Maintainability of Software Systems, Software Quality
Control, vol. 13, no. 3, pp. 297–320, Kluwer Academic
Publishers, Hingham, MA, USA (2005)



[18] Project Management Institute: A Guide to the Project
Management Body of Knowledge (PMBOK Guide), Third
Edition, PMI Press, 3rd edition (2004)

[19] Managing Successfull Projects with PRINCE2, Office of
Government Commerce, London, UK (2005)

[20] IBM, Rational, Rational Unified Process in Rational Method
Composer (2007)

[21] Scotto, M., Sillitti, A., Succi, G., Vernazza, T.: A Relational
Approach to Software Metrics, SAC’04: Proceedings of the
2004 ACM symposium on Applied computing, pp.
1536–1540, Nicosia, Cyprus (2004)

[22] Sillitti, A., Russo, B., Zuliani, P., Succi, G.: Deploying,
Updating, and Managing Tools for Collecting Software
Metrics, QUTE-SWAP’04: Proceedings of the 2004
workshop on Quantitative techniques for software agile
process, pp. 1–4, Newport Beach, California (2004)

[23] CollabNet: http://subversion.tigris.org/.

[24] Ware, M.S., Fox, C.J.: Securing Java code: Heuristics and
an Evaluation of Static Analysis Tools, SAW’08:
Proceedings of the 2008 workshop on Static analysis, pp.
12–21, Tucson, Arizona, ACM (2008)

[25] Yang, Q., Li, J.J., Weiss, D.: A Survey of Coverage Based
Testing Tools, AST’06: Proceedings of the 2006
international workshop on Automation of software test, pp.
99–103, Shanghai, China (2006)


